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CHAPTER 1

Introduction

RKnot is a simulation architecture for viral spread that aims to:

1. Faithfully replicate spread in real world conditions

2. Investigate the impacts of policy decisions and other interventions

3. Provide visualization tools for ease-of-presentation

RKnot attempts to distinguish itself from prevailing models by:

• allowing for customized population sizes and demographics

• supporting more realistic movement and contact patterns

• modulating transmission risk to account for varying subject behavior and location properties

• influencing interactions via an array of interventions that can be used in any combination

RKnot utilizes parallelization via Ray and JIT-compilation via Numba for performance improvements amd Matplotlib
for visualizaitons.
<IPython.core.display.HTML object>

1.1 Basic Example

A simulation and visualization can be completed in a few quick lines of code. The user need only specify a dictionary
describing the population, group, and a handful of parameters describing the simulation space and viral characteris-
tics.

Below we simulate:

• a population of 1,000 subjects,

• beginning with five initially infected;

• a density of 1 subject per location

• a maximum simulation length of 150 days

3
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– the simulation will automatically stop when there are no more infections

• an initial reproduction number, 𝑅0, of 3

• an infection duration of 14 days

• an immunity duration of 365

from rknot import Sim, Chart

group = {'n': 1000, 'n_inf': 5}
params = {'R0': 3,'imndur': 365, 'infdur': 14, 'density': 1, 'days': 150}

sim = Sim(groups=group, **params)
sim.run()

chart = Chart(sim)
chart.to_html5_video()

<IPython.core.display.HTML object>

Results:

Peak 52.1%
HIT 72.7%
Total 92.2%
Fatalities 0.00%
% > 70 nan%
IFR 0.00%
Days to Peak 36

As per the chart, this simulation results in a peak at 29 days, with 53% of the population infected at the peak and
a Herd Immunity Threshold of 70%. In total 93% of the population was infected and 0.4% of the population, or 4
subjects, died.

1.2 Next Steps

• Here you can explore how viral spread theory is incorporate into *RKnot*.

• Here you can learn about the core concepts on which the simulation architecture is built.

Or you can jump right into the example simulations we have built and explore how different properities impact spread:

• Factors Influencing Spread

• Impact of Dynamce Transmission Risk

4 Chapter 1. Introduction



CHAPTER 2

Viral Spread Theory in RKnot

RKnot is built up from the contact level. A contact is an interaction between an infected person and a susceptible
person that could result in transmission of the virus (more details below). Contacts occur in a 2d environment in which
subjects move randomly according to pre-defined distributions or deterministically according to event subscription.

When a contact occurs, transmission is determined stochastically according to a multi-faceted likelihood of transmis-
sion tailored specifically to the infected and susceptible subjects in contact at the specific time at the specific location.

The expected number of new infections at any time, can be found as the sum of all contacts at that time multiplied
each contact’s specific transmission risk.

𝐸(𝑛𝑖𝑛𝑓𝑠) =

𝑁∑︁
𝑖=1

𝑐𝑖 * 𝜏𝑖(2.1)

𝜏 is a fundamental property of virus that can be further augmented for properties of the infected, or the subject, or the
location of the contact.

𝜏𝑖 = 𝜏 * 𝑇𝑖𝑛𝑓,𝑖 * 𝑇𝑠𝑢𝑠,𝑖 * 𝑇𝑙𝑜𝑐,𝑖(2.2)

Thus, the transmission risk of the virus is required in order to mimick its spread. This can be provided directly or
derived from a virus’ estimated 𝑅0.

2.1 𝑅0

The propensity for a virus to spread is most-commonly referenced by its Basic Reproduction Number, 𝑅0. 𝑅0 is the
number of new infections that will be caused by a single infected person in an entirely susceptible population.

5
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At an individual level, 𝑅0 is influenced by many factors: the number of contacts the infected person has, the location
of contacts, the social setting of contacts, etc.

At a population level, many models of 𝑅0 assume that the individual factors average out, thus leaving us with a
property that is fundamental to the virus itself. We can see there is a broad range of 𝑅0 values for different viruses in
the wikipedia entry.

𝑅0 can be described as:

𝑅0 = 𝛽 * 𝑑(2.3)

where: 𝛽 = transmission rate (infections / day)

𝑑 = duration of infection (days)(2.4)

The above ignores the number of contacts made, however, 𝛽 can be further broken down as:

𝛽 = 𝜏 * 𝑐(2.5)

where: 𝜏 = probability of transmission, or transmission risk

𝑐 = contacts per day(2.6)

which yields:

𝑅0 = 𝜏 * 𝑐 * 𝑑(2.7)

Using the relationship above, we can simulate viral spread contact by contact, however, we must have a value(s) for 𝜏 .

6 Chapter 2. Viral Spread Theory in RKnot
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2.2 Static Transmission Risk

There are many mathematical models used to describe viral transmission, the most commonly-referenced being the
SIR model (Suscepitble-Infected-Recovered).

The SIR model makes several simplifying assumptions:

• Closed, well-mixed population with no demography

• Constant Rates

This allows viral spread to be described in 3 equations.

𝑑𝑠

𝑑𝑡
= 𝛽𝑠𝑖

𝑑𝑖

𝑑𝑡
= 𝛽𝑠𝑖− 𝑖𝑑−1

𝑑𝑟

𝑑𝑡
= 𝑑𝑖(2.8)

where: 𝑠 = 𝑆/𝑁 = number of susceptible / total population size

where: 𝑖 = 𝐼/𝑁 = number of infected / total population size

where: 𝑠 = 𝑅/𝑁 = number of recovered / total population size

The simplified model allows for some quick estimates of various spread characteristics. Herd Immunity threshold, for
instance, can be found as:

HIT = 1 − 1/𝑅0(2.9)

For instance, 𝑅0 of 2.5x, the prevailing estimate for sars-cov-2, yields a HIT of 60%.

The assumption of constant rates presents problems for simulating at the contact level, however. SIR assumes that
transmission risk is constant during the infection period and that each subject in the population has the same number
of contacts and so is able to ignore 𝜏 and 𝑐.

Referring to equation (5) above:

• 𝑅0 is known (from external analysis and provided by the user)

• 𝑑 is known (from external analysis and provided by the user)

Thus, unknowns are 𝜏 & 𝑐

As per above, we must know 𝜏 in order to simulate spread.

2.2.1 Expected Contact Rate

While we do not know 𝑐, the simulation space is given a number of parameters that allow us to estimate the expected
number of contacts. We know:

• The population size

2.2. Static Transmission Risk 7
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• The number of locations

• The movement patterns of subjects

• The likelihood that a subject will be at a particular location at a particular time given 1/2/3 above

A simple method to estimate 𝑐 is to assume that each subject is equally likely to be in any one location at any time.
The probability of a single dot being in a singe location is:

𝑃 (𝐿𝑂𝐶𝑥𝑦, 𝐷𝑂𝑇𝑖) = 1/𝑁 (2.10)

where: 𝑥𝑦 = coordinates of the location

𝑁 = number of locations(2.11)

The probability of another dot being there at the same time:

𝑃 (𝐿𝑂𝐶𝑥𝑦, 𝐷𝑂𝑇𝑖𝑗) = 1/𝑁 * 1/𝑁 (2.12)

The probability of 𝑘 dots being at the same location at the same time:

𝑃 (𝐿𝑂𝐶𝑥𝑦, 𝐷𝑂𝑇𝑖𝑗) = 1/𝑁𝑘(2.13)

Then, the number of ordered contacts is:

𝑘∑︁
𝑖=1

(1/𝑁𝑘)(2.14)

And for all possible orders:

𝐸(𝑐) = 𝑘 *
𝑘∑︁

𝑖=1

(1/𝑁𝑘)(2.15)

8 Chapter 2. Viral Spread Theory in RKnot
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The result is a contact rate that is closely related to the density of the simulation space. For example, a population of
100 subjects in a space of 100 locations, would have an expected contact rate of 1.01 per day

In fact, we can prove that the contact rate for an equal mover is the density using probability theory. We can view
the probability of contact with other dots in the space as a binomial random variable with the trials representing the
number of dots at a location, so:

𝐵(𝑘 − 1, 1/𝑁)

k is the number of dots

N is the number of locations(2.16)

If there are three dots (and 3 locations), the distribution governing their interactions is the sum of the two Binomial
functions:

𝐵(2 − 1, 1/3) + 𝐵(2 − 1, 1/3)

We know the sum of two Binomial distributions is:

𝐵(𝑚, 𝑝) + 𝐵(𝑛, 𝑝) = 𝐵(𝑚 + 𝑛, 𝑝)

so:

𝐵(2 − 1, 1/3) + 𝐵(2 − 1, 1/3) = 𝐵(2, 1/3)

and for k dots:

𝑖∑︁
𝑘

𝐵(𝑛𝑖, 1/𝑁) = 𝐵(

𝑖∑︁
𝑘

𝑛𝑖, 1/𝑁) where: 𝑛𝑖 = 1(2.17)

which simplifies to:

𝐵(𝑘, 1/𝑁)(2.18)

and we know the mean of a binomial distribution is the product 𝑛 * 𝑝

𝜇 = 𝑛𝑝 = 𝑘/𝑁 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

We can see that relationship below, where an environment with density of 5 generates a 𝑘 of 5.

2.2. Static Transmission Risk 9
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[85]: import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt

density = 5
n_dots = 10000
n_locs = n_dots // density

# binom always returns n + 1
p = 1 / n_locs
n = n_dots - 1
x = np.arange(n + 1)

kontact = st.binom(n, p)

fig, ax = plt.subplots(1,1, figsize=(16,12))

counts, bins, _ = plt.hist(
np.random.binomial(n, p, 100000),
bins=x, density=True, rwidth=.9

)

ax.plot(x+.5, kontact.pmf(x))

ax.set_xticks([i+.5 for i in range(20) if not i % 5])
ax.set_xticklabels([i for i in range(20) if not i % 5])
ax.set_xlabel('Number of Contacts')

plt.text(.5, .5, f'$\mu$: {n*p} contacts / day', transform=ax.transAxes)

plt.xlim(0,20)

plt.gcf().set_facecolor('white') # Or any color
plt.tight_layout()
plt.savefig('imgs/binom.png')

10 Chapter 2. Viral Spread Theory in RKnot
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2.2.2 Likelihood of Transmission

With the expected contact rate known, probability of transmission under the SIR model is found as:

𝜏 =
𝑅0

*𝑐
(2.19)

So, again, If a susceptible subject has contact with an infected at the same location, at any time, its probability of
infection is:

𝜏𝑖 = 𝜏 * 𝑇𝑖𝑛𝑓,𝑖 * 𝑇𝑠𝑢𝑠,𝑖 * 𝑇𝑙𝑜𝑐,𝑖(2.20)

2.2. Static Transmission Risk 11
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If a susceptible comes in contact with multiple infected, we assume that this results in multiple contacts that occur in
succession. So we must sum all the branches of the probability tree that end in an infection:

𝑁∑︁
𝑖=1

(1 − 𝜏𝑖)
𝑛 * 𝜏𝑖(2.21)

where: 𝜏𝑖 = likelihood of transmission for contact i

𝑁 = number of infected dots(2.22)

This ensures that the likelihood of transmission is asymptotic to 1, as follows:

2.3 Dynamic Transmission Risk

The SIR model makes several assumptions that make for simpler math, but that do not map well onto reality.

In particular, SIR assumes constant transmission risk,

𝜏

, when in reality, we know that the infectiousness of an individual changes over time as a function of viral load. It
takes time for the virus to accumulate in the subject and, then, in turn it takes time for the subject to dimish the virus
via its immune response.

Generally, the greater the viral load, the greater the transmission risk. And so the likelihood of transmission should
follow a similar pattern as the viral load (or vice versa). This New York Times piece has a nice visualisation of this
concept for sar-cov-2.

There are several techinques available for incorporating viral load in a viral spread model including serial interval,
explored here and generation time, explored here. These techniques, however, again tend to ignore 𝑐 and focus on 𝛽.

12 Chapter 2. Viral Spread Theory in RKnot
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2.3.1 Hutch Model

A paper from a team at the Fred Hutchinson Cancer Research Center, however, maps transmission risk directly onto
an estimated viral load curve and infectiousness factor and optimizes it at a specfic contact rate and contact variance
(hence forth known as the Hutch model).

First, we will show how the dynamic transmission risk curve is derived. The goal is to produce an array of non-zero
probabilites reflecting the likelihood of transmission of virus from one infected to a susceptible in a single contact,
based on the known viral load characteristics of the virus.

The Fred model combines quantities of infectiousness and viral load. Viral load is found via a system of 6 differential
equations as follows:

𝑑𝑠

𝑑𝑡
= −𝛽𝑣𝑠

𝑑𝑖

𝑑𝑡
= 𝛽𝑣𝑠− 𝛿𝑖𝑘𝑖−𝑚𝑖

𝑒𝑟

𝑒𝑟 + 𝜑𝑟

𝑑𝑣

𝑑𝑡
= 𝜋𝑖− 𝛾𝑣

𝑑𝑀1

𝑑𝑡
= 𝜔𝑖𝑀1 − 𝑞𝑀1

𝑑𝑀2

𝑑𝑡
= 𝑞(𝑀1 −𝑀2)

𝑑𝑒

𝑑𝑡
= 𝑞(𝑀2 − 𝛿𝑒𝐸(2.23)

The variable v is the viral load.

With viral load known, the transmission risk, 𝜏 , can be found as:

𝜏𝑡 =
𝑣(𝑡)𝛼

𝛾𝛼 + 𝑣(𝑡)𝛼
(2.24)

The paper provides estimates for several of the parameters including 𝛾, 𝛼, etc. The system can be described and solved
using the odeint method in scipy.

[65]: import math
import numpy as np
from scipy.integrate import odeint

def inf_rate(beta,v,s):
return beta*v*s

def sfunc(beta, v, s):
return -inf_rate(beta, v, s)

def vfunc(pi,i,c,v):
return pi*i - c*v

(continues on next page)

2.3. Dynamic Transmission Risk 13

https://www.medrxiv.org/content/10.1101/2020.08.07.20169920v3.full.pdf


RKnot

(continued from previous page)

def ifunc(beta, v, s, delta, i, k, m, e, r, phi):
inf_r = inf_rate(beta,v,s)
dens_rate = delta*(i**k)
acq_res = (m * e**r) / (e**r + phi**r)
return inf_r - dens_rate*i - acq_res*i

def m1func(omega, i, m1, q):
return omega*i*m1 - q*m1

def m2func(q, m1, m2):
return q * (m1-m2)

def efunc(q, m2, dE, e):
return q*m2 - dE*e

def model(z,t):
beta=10**-7.23
k=0.08
delta= 3.13
pi=10**2.59
m=3.21
omega=10**-4.55
r=10
dE=1
q=2.4*10**-5
c=15

s, i, v, m1, m2, e = z[0], z[1], z[2], z[3], z[4], z[5]

dsdt = sfunc(beta, v, s)
didt = ifunc(beta, v, s, delta, i, k, m, e, r, phi)
dvdt = vfunc(pi,i,c,v)
dm1dt = m1func(omega, i, m1, q)
dm2dt = m2func(q, m1, m2)
dedt = efunc(q, m2, dE, e)

dzdt = [dsdt,didt,dvdt,dm1dt,dm2dt,dedt]
return dzdt

# FROM PRIOR RESEARCH
pi=10**2.59
c = 15
S0=10**7
I0=1
V0=pi*I0/c
M10=1
M20=0
E0=0
phi=100
z0 = [S0, I0, V0, M10, M20, E0]

t = np.linspace(0,20,30*4)

z = odeint(model,z0,t)
v= z[:, 2]

14 Chapter 2. Viral Spread Theory in RKnot
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This results in the curve below, which shows the level of virus present in an infected person over time.

We can see that sars-cov-2 viral load can have a long tail, however, the Hutch paper showed that the amount of virus
present during the tail is unlikely to result in high transmission, as per below.

Transmission risk is derived from the viral load above as well as two properties of the infectiousness of the subjects in
the contact, 𝛼 and 𝛾 (see the paper for more details).

The paper estimated 𝛼 = 0.8 and 𝛾 = 107.

[67]: def infness(v, alpha, gamma):
num = v**alpha
den = gamma**alpha + v**alpha
return num/den

def taufunc(v, alpha, gamma):
return infness(v, alpha, gamma)**2

alpha = 0.8
gamma = 10**7

vlin = np.linspace(1, 10**10, 10**5)
tmr = taufunc(vlin, alpha, gamma)

tmr is the transmission risk curve that we will utilize in our simulations. It is a 1d array with each element representing
the likelihood of transmission of the virus at that point in the infection’s life cycle.

We can see from the plot below, that transmission risk only increases materially at exponentially higher viral loads:

2.3. Dynamic Transmission Risk 15
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We can further combine Chart 1 and Chart 2 above to show that transmission of sars-cov-2 is likely only during a very
narrow range in the early stage of infection.

16 Chapter 2. Viral Spread Theory in RKnot
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Note that there is only a significant risk of transmission of the virus for during the first few days of the infection period
(shown as the more orange color under the curve).

If we assume random 𝜏 values from tmr curve above for 30 different infected dots, the likelihood of transmission to
a susceptible as a function of the number of dots at the same location, scales as follows:

2.3. Dynamic Transmission Risk 17
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2.4 Other Forms of Heterogeneity

RKnot seeks to address the shortfalls in 𝑅0 models by allowing the user to introduce customized, heterogeneous
populations across several axis including:

• Fatality Rate

• Population Density

• Movement - frequency and distance of location changes in space according to different probability distributions.

• Events - in the real world, people do not move and interact according to smooth probability functions. In fact,
they typically have a small subset of movements that are huge outliers from any distribution. These are the
professional sporting events, vacation trips, church functions, house parties, etc. that are scheduled and often
times recurring. Thankfully, they are more often than not deterministic, which allows us to incorporate them in
a simulation.

• Susceptibility - segments of population can be made immune (without requiring vaccination) to mimick phe-
nomenon like possible T-cell immunity.

• Subject Transmission Factor, 𝑇𝑖: 𝑅0 assumes that all contacts have the same transmission risk, 𝜏 (subject
to the viral load at the time of the interaction). RKnot introduces a unitless Transmission Factor, 𝑇 , for each
subject at each contact that can modulate 𝜏 . This can be used to mimick social distancing or mask wearing or
different socio-cultural norms that may impact spread (i.e. east Asian bows versus southern European double-
kisses).

Still To Be Incorporated
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• Location Transmission Factor, 𝑇xy: similar to 𝑇𝑖 above, we can introduce a transmission factor to specific
locations that might result in higher or lower likelihood of spread. This could be used to simulate certain work
environments (like enclosed office spaces or meat-packing plants). It can also be used to mimic seasonality, by
changing 𝑇𝑥𝑦 over time to account for, say, more time outdoors in temperate seasons.

• Testing and Isolation - with the heightened awareness of a pandemic, individuals in population are more likely
to self-isolate or quarantine themselves upon sympton onset, thereby helping to reduce spread.

2.5 The Average Contact

Currently, RKnot assumes that each and every contact is an Average Contact.

The average contact is a purely theoretical interaction that would result in about an average likelihood of transmission
relative to all other possible interactions. It is not influenced by external factors such as the demographics of the
subjects, the properties of the location, etc. Thus, the 𝜏 of an Average Contact is a fundamental property of the virus.

I like to think of the Average Contact as the Elevator Case, i.e.:

• Two people on an elevator, standing three feet apart, having a conversation for several minutes before one person
exits. No masks nor other conscious social distancing, but no particularly reckless behaviour either.

Every other conceivable interaction can now be scaled relative to the Elevator Case on a continuum of higher or lower
probability of transmission using transmission factors, 𝑇 . For instance:

• two college students pressed closely together on a concert floor and yelling at the band on stage would have
𝑇 >>> 1𝑥

• two people standing in a open field, 6 feet apart with masks on exchanging limited pleasantries would have
𝑇 <<< 1𝑥

2.6 References

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782273/

• https://www.bmj.com/content/370/bmj.m3563

• https://www.medrxiv.org/content/10.1101/2020.06.28.20142190v1

• https://fivethirtyeight.com/features/without-a-vaccine-herd-immunity-wont-save-us/

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935673/

• https://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1804098/

• https://www.ijidonline.com/article/S1201-9712%2820%2930119-3/pdf

• https://www.nytimes.com/interactive/2020/10/02/science/charting-a-coronavirus-infection.html?s=03
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CHAPTER 3

Key Concepts

RKnot builds a simulation across four dimensions of global properties:

• Time

– The fundamental unit of time is a tick.

– Each iteration of the simulation is one tick. During a tick, the following occurs:

* subjects can move to new locatioccns

* subjects can contact other subjects

* attributes of the subjects can change

– Many of the fundamental properties of a virus are measured in days. RKnot translates daily inputs into
ticks.

– Currently, only one tick per day is supported. The goal is to support any number of ticks during a day.

• Space

– Subjects interact in an two-dimensional environment called the Grid.

– The Grid must be a square. The Grid size can be passed manually or it can be determined automatically
for a specified density level.

– Each pair of xy coordinates in the Grid is a location.

– A contact occurs when an infected subject and a susceptible subject occupy the same location at the same
tick.

– There is no limit to the number of subjects that can occupy a single location at the same time.

– Subjects move through the Grid according to user-specified mover functions. These functions typically
incorporate a degree of randomness.

– A subject can also move by attending an Event.

– Portions of the Grid may be restricted by Boxes and/or Gates.

• Subjects

21
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– subjects (also referred to as “dots”) are the analog of people in the simulation.

– subjects carry many attributes through the life of the simulation that are updated and changed as required
see Dot Matrix).

• Virus

– the user may pass several characteristics fundamental to the simulated virus. RKnot may infer others.
Virus characteristics include:

* 𝑅0

* Duration of Infection

* Transmission Risk

* Duration of Immunity

* Infection Fatality Rate

3.1 The Sim

The Sim object is the user interface for the RKnot simulation package and acts as a thin wrapper for the Server and
Worker classes of Ray actors that form the core of a simulation.

A Sim object is instantiated with pre-defined characteristics of the space, the subjects, and the virus.

For demonstration purposes, a quick default simulation can be run by simply providing a few parameters.

from rknot import Sim, Chart

params = {'square': 4, 'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}
group = {'n': 2, 'n_inf': 1}
sim = Sim(groups=group, **params)

run is the main method of the Sim object. run iterates through each tick in the simulation. Currently, one day ==
one tick.

sim.run()

sim.run() does not return any values, but it does update various attributes of the sim object. After calling run,
you can then pass sim to the Chart object, which will generate an animation of the simulation across time.

chart = Chart(sim, dotsize=2000, interval=200, show_intro=False, use_init_func=False)
chart.to_html5_video()

alternative text

The animation is split in 3 sections: * Interactions * the visual representation of subjects in the Grid. Each marker is
a subject and each cross-section of gridlines is a point (for larger grids the lines are removed). * Details * provides
several on-the-run statistics including Effective Reproduction Number, total fatalities, and fatalities by group. * Infec-
tions * shows the change in infection level over each day, showing both current infection level and total penetration
(“Ever” in the legend)

The animation is built on AxesSubPlot components that can be arranged in any fashion desired, including a handful of
preset layouts. see Chart for more details.

As per the animation above, the default simulation is of a single infected subject, moving across a 4x4 two-dimensional
space according to the equal mover function. The subject is equally likely to move to any location in the Grid on
any tick.
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3.2 Subjects

3.2.1 Dots

Dots are subjects/people in the simulation space. A subject has many attributes that are adjusted over time, including:

• which Group it belongs to

• if it is alive

• if it is infected

• if it is susceptible

• its location

• any restricted areas that apply to it (see Boxes and Gates)

• if infected, when it will recover (or when it will succumb)

• if recovered, when it will again become susceptible

• its fatality rate

• its mover function

see Dot Matrix for a more fulsome discussion.

3.2.2 Groups

Dots are the fundamental subjects of the simulation, but dots can only be created via a Group object.

To create our group objects, we can pass a list of dictionaries to the groups parameter of Sim. The dictionaries
correspond to the attributes of the group, which in turn correspond to the attributes of its constituent dots at initiation.

To create a group, you need only provide two parameters:

• n, population size of the group at initiation

• n_inf, number of infected subjects in the group at initiation

If only one group is being provided, you can pass a dictionary. With multiple groups, pass an iterable of dicts.

params = {'square': 10, 'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}
group = dict(n=2, n_inf=1)

sim = Sim(groups=group, **params)
sim.run()

chart = Chart(
sim, figsize=(16,8), dotsize=2000, interval=200,
layout='dots_only', show_intro=False

)
chart.to_html5_video()
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Below we see this structure creates a 10x10 Grid with two subjects, only one of which is infected at the outset.

alternative text

There are many other parameters and customizations that can provided:

• name

– if not provided, Sim will create one

• box & box_is_gate

– see Boxes and Gates

• mover

– function used to dictate a dot’s movement (see Mover Functions)

• tmf

– *transmission factor*, 𝑇 , applied to each of the dots interactions.

– default: 1

• susf

– susceptiblity factor; the fraction of subjects in a group that will be made susceptible to the virus at initiation

– the inverse of susf (1/𝑠𝑢𝑠𝑓 ) is the number of subjects in a group that already have immunity.

• ifr

– infection fatality rate; or the likelihood that an infection will be fatal

These can again be passed as a dictionary of a single group:

group = dict(
name='main', n=2, n_inf=1, mover='equal',
tmf=1.25, susf=.75, ifr=0.005

)

sim = Sim(groups=group, **params)
sim.run()

chart = Chart(
sim, figsize=(16,8), dotsize=2000, interval=200,
layout='dots_only', show_intro=False

)
chart.to_html5_video()

alternative text

Or as an iterable of dictionaries. Each group is assigned a unique marker in the animation.

group1 = dict(name='1', n=1, n_inf=1, mover='local', tmf=1.25, susf=.75, ifr=0.005)
group2 = dict(name='2', n=1, n_inf=0, mover='equal', tmf=0.75, susf=0.95, ifr=0.05)
group3 = dict(name='3', n=1, n_inf=0, mover='equal', tmf=0.25, susf=0.5, ifr=0.4)
groups = [group1, group2, group3]

sim = Sim(groups=groups, **params)
sim.run()

chart = Chart(
sim, figsize=(16,8), dotsize=2000, interval=200,

(continues on next page)
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(continued from previous page)

layout='dots_only', show_intro=False
)
chart.to_html5_video()

alternative text

3.3 The Grid

All interactions in an RKnot simulation take place inside the Grid. The grid is a Grid object, which in turn is a
sub-classed numpy array with some additional features.

The Grid size can be determined by passing the square or density parameters. Each density accepts either
a str or a float. The float value is a specific desired subject per location and a str must be on of the three
categories below.
Available str values for density and their corresponding densities are:

low: 0.2

med: 1

high: 10

If we set density=med, the Grid will be set such that the density is 1 subject per location. For a group of 100
subjects, that will result in a 10x10 grid. We can see these attributes by passing details=True.

[9]: params = {'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}
group = dict(name='main', n=100, n_inf=1)

sim = Sim(groups=group, density='med', details=True, **params)

HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=93.0),
→˓HTML(value='')), layout=Layout(dis...

---------------------------------------------------------------------------------
| SIM DETAILS |
|-------------------------------------------------------------------------------|
| Boundary| [ 1 10 1 10]| Locations| 100|
|-------------------|-------------------|-------------------|-------------------|
| Population| 100| Density| 1.0|
|-------------------|-------------------|-------------------|-------------------|
| Contact Rate| 1.01| | |
|-------------------|-------------------|-------------------|-------------------|

sim.run()

chart = Chart(
sim, figsize=(16,8), layout='dots_only',
show_intro=False, use_init_func=False

)
chart.to_html5_video()

alternative text

For smaller populations, the density level can only be approximated. RKnot defaults to rounding up to the nearest
square value.
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You can also pass a float value to density in order to create a specified density. Here, we set density=3.5

[13]: group1 = dict(name='1', n=1000, n_inf=1)
group2 = dict(name='2', n=20, n_inf=20)
groups = [group1, group2]

sim = Sim(groups=groups, density=3.5, details=True, **params)

HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=93.0),
→˓HTML(value='')), layout=Layout(dis...

---------------------------------------------------------------------------------
| SIM DETAILS |
|-------------------------------------------------------------------------------|
| Boundary| [ 1 18 1 18]| Locations| 324|
|-------------------|-------------------|-------------------|-------------------|
| Population| 1,020| Density| 3.15|
|-------------------|-------------------|-------------------|-------------------|
| Contact Rate| 3.16| | |
|-------------------|-------------------|-------------------|-------------------|

sim.run()

chart = Chart(sim, figsize=(16,8), layout='dots_only', show_intro=False)
chart.to_html5_video()

alternative text

3.3.1 Mover Functions

When a subject changes locations, this is called a ‘move’. A move is completed during a tick and the movement of a
subject on any tick is governed by its mover function. Movers select a location according to a pre-defined probability
distribution, so the general movement pattern of a dot can be pre-determined, but any one movement occurs randomly.

There are currently 5 mover functions. Their respective definitions, along with examples of their movement are
provided below. A float value is also accepted which is used as the p-value in a geometric movement pattern.
Equal

The subject is equally likely to move to any location.

alternative text

Local

The subject has a strong bias towards dots only in its immediate vicinity.

alternative text

Traveller

The subject commonly moves to locations far across the Grid.

alternative text

Quarantine

The subject has a strong bias towards not moving, with only some movement occuring.
(continues on next page)
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(continued from previous page)

alternative text

Social

The subject moves mostly within its vicinty but also to other more medium distance locations.

alternative text

In addition to specifying a mover function, the user can also simply specify a float value between 0 and 1.

This value corresponds to a p-value used in a geometric distrubtion. The relationship between p-value and
movement is shown below.

The higher the p-value, the greater the bias towards shorter moves. Increasing p-value, all else equal, should
decrease the number of contacts in a sim. This is explored further here.

Below we compare the movement patterns of two subjects with very different p-value.

params = {'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}

group1 = dict(n=1, n_inf=1, mover=.25)
group2 = dict(n=1, n_inf=1, mover=.95)
groups = [group1, group2]
sim = Sim(groups=groups, square=10, **params)

(continues on next page)
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(continued from previous page)

sim.run()

chart = Chart(sim, figsize=(16,8), layout='dots_only', show_intro=False)
chart.to_html5_video()

alternative text

3.4 Boxes and Gates

The movement of a subject across the Grid can be restricted by two concepts known as Boxes and Gates. These
concepts are designed to mimick certain funcitonal or perceived boundaries between groups, such as international
borders or closed-access communities like assisted-living facilities.

The distinction between boxes and gates is simple:

• Subjects cannot exit Boxes

• Subjects cannot enter Gates

3.4.1 Boxes

A box is a 𝑚 * 𝑛 subset of locations within the Grid that a subject(s) cannot leave.

The locations are specified by passing a four element iterable that specifies the coordinates of the “four corners” of the
box according to [𝑥0, 𝑥1, 𝑦0, 𝑦1]

So passing:

box = [2,6,3,9]

creates a box with the four corners:

(2,3) (2,9) (6,3) (6,9)

and a total of 35 locations.

Currently, a box can only be specified by

1. passing the box parameter as group keyword

2. by passing a `vbox <#VBoxes>‘__.

Every dot in the group can only move within the box, regardless of the size of the Grid.

group1 = dict(name='1', n=2, n_inf=1, box=[1,3,2,4])

sim = Sim(groups=group1, square=10, **params)
sim.run()

chart = Chart(
sim, figsize=(16,8), dotsize=2000,
layout='dots_only', show_intro=False, use_init_func=False

)
chart.to_html5_video()
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alternative text

A group can only have one box and each group can have its own box.

group1 = dict(name='1', n=2, n_inf=1, box=[1,3,2,4])
group2 = dict(name='2', n=2, n_inf=0, box=[6,9,6,10])
groups = [group1, group2]

sim = Sim(groups=groups, square=10, **params)
sim.run()

chart = Chart(
sim, figsize=(16,8), dotsize=2000,
layout='dots_only', show_intro=False, use_init_func=False

)
chart.to_html5_video()

alternative text

Remember that a box only restricts the subjects in that group from leaving the space. Other dots not assigned to that
box can move into the space without restriction.

group1 = dict(name='1', n=5, n_inf=1, box=[1,3,1,3])
group2 = dict(name='2', n=5, n_inf=0)
groups = [group1, group2]

sim = Sim(groups=groups, square=10, **params)
sim.run()

chart = Chart(sim, figsize=(16,8), dotsize=2000, layout='dots_only', show_intro=False)
chart.to_html5_video()

alternative text

3.4.2 Gates

Gates are the inverse of boxes. A gate is an area that subjects cannot enter.

Gates are a Gate object, which are a subclass of the Box class (in turn a subclass of ndarray), and they are created via
the same 4 element iterable. For now, a gate can only be created by passing the box_is_gated=True flag as a
keyword in a group dictionary, or by specifying a vbox.

Using the previous example, we can see that group2 dots can no longer enter the group1 box.

group1 = dict(name='1', n=5, n_inf=1, box=[1,3,1,3], box_is_gated=True)
group2 = dict(name='2', n=5, n_inf=0)
groups = [group1, group2]

sim = Sim(groups=groups, square=10, **params)
sim.run()

chart = Chart(
sim, figsize=(16,8), dotsize=2000, layout='dots_only', show_intro=False,
use_init_func=False

)
chart.to_html5_video()

alternative text
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This structure allows for intricate movement patterns. We show isolated groups below.

We will also provide the show_restricted=True flag, which will outline the boxes and gates for us. It will also
the label the restricted area with the name of the group used to form the it.

group1 = dict(name='1', n=50, n_inf=5, box=[1,5,1,20], box_is_gated=True)
group2 = dict(name='2', n=50, n_inf=5, box=[6,25,3,10], box_is_gated=True)
group3 = dict(name='3', n=50, n_inf=5, box=[10,21,16,22], box_is_gated=True)
group4 = dict(name='4', n=50, n_inf=5, box=[2,15,23,25], box_is_gated=True)
groups = [group1, group2, group3, group4]

sim = Sim(groups=groups, square=25, **params)
sim.run()

chart = Chart(sim,
figsize=(16,8), layout='dots_only', show_intro=False, use_init_func=False,
show_restricted=True,

)
chart.to_html5_video()

alternative text

And here some isolated and some free moving.

group1 = dict(name='1', n=50, n_inf=5, box=[1,5,1,5], box_is_gated=True)
group2 = dict(name='2', n=50, n_inf=5, box=[14,19,14,19], box_is_gated=True)
group3 = dict(name='4', n=10, n_inf=5)
group4 = dict(name='4', n=10, n_inf=5)
groups = [group1, group2, group3, group4]

sim = Sim(groups=groups, square=25, **params)
sim.run()

chart = Chart(
sim, figsize=(16,8), layout='dots_only',

show_intro=False, use_init_func=False
)
chart.to_html5_video()

alternative text

3.4.3 VBoxes

A VBox is a vacant area of the Grid, meaning there are no subjects inside the box at the initiation of the Sim and that
no subjects can enter the VBox except via Travel events.

VBoxes can be used to customize contact patterns, as done in the Dynamic Transmission Risk simulations. They can
also be used to mimick areas that people typically only visit, rather than reside in, such as hospitals, sports arenas,
office buildings, etc.

VBoxes are simply box objects and can be created by passing the vboxes parameter to Sim. VBoxes are always
setup with a corresponding gate.

*IMPORANT*: A VBox is not included in the density calculation of the grid size.

If we pass an integer, Sim will create a VBox with the value corresponding to the number of locations in the VBox.
The VBox will be placed in the top-left corner of the Grid.
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from rknot import Sim

vbox = 4

groups = [
dict(n=10, n_inf=1, mover='social'),
dict(n=10, n_inf=1, mover='local')

]
params = {'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365, 'vboxes': vbox}
sim = Sim(groups=groups, **params)
sim.run(dotlog=True)

chart = Chart(
sim, figsize=(16,8), layout='dots_only',

show_intro=False, use_init_func=False
)
chart.to_html5_video()

alternative text

We can also pass a boundary as a 4 item iterable.

from rknot import Sim

vbox = [1,3,1,3]

groups = [
dict(n=10, n_inf=1, mover='social'),
dict(n=10, n_inf=1, mover='local')

]
params = {'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365, 'vboxes': vbox}
sim = Sim(groups=groups, **params)
sim.run(dotlog=True)

chart = Chart(
sim, figsize=(16,8), layout='dots_only',

show_intro=False, use_init_func=False
)
chart.to_html5_video()

alternative text

We can pass a dictionary and include the label keyword to indicate a name for the VBox.

We’ve included a couple Travel objects to show how the VBox can be accessed. Simply assign the index of the
vbox as a parameter to Travel and the Sim will determine the location automatically.

from rknot import Sim
from rknot.events import Travel

vbox = {'box': [1,3,1,3], 'label': 'Hospital'}

groups = [
dict(n=10, n_inf=1, mover='social'),
dict(n=10, n_inf=1, mover='local')

]
params = {'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365, 'vboxes': vbox}
events = [

(continues on next page)
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(continued from previous page)

Travel(
name='vbox_event', start_tick=3, recurring=3,
groups=[0,1], capacity=1, vbox=0,

)
]
sim = Sim(groups=groups, events=events, **params)
sim.run(dotlog=True)

chart = Chart(
sim, figsize=(16,8), layout='dots_only',

show_intro=False, use_init_func=False
)
chart.to_html5_video()

alternative text

Finally, we can pass multiple VBoxes as a list of dictionaries.

from rknot import Sim

vboxes = [
{'box': [1,3,1,3], 'label': 'Hospital'},
{'box': [5,7,1,3], 'label': 'Arena'}

]

groups = [
dict(n=20, n_inf=1, mover='social'),
dict(n=20, n_inf=1, mover='local')

]
params = {'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365, 'vboxes': vbox}
sim = Sim(groups=groups, **params)
sim.run(dotlog=True)

chart = Chart(
sim, figsize=(16,8), layout='dots_only',

show_intro=False, use_init_func=False
)
chart.to_html5_video()

alternative text

3.5 Events

Events impact the attributes of subjects over the course of the simulation.

Events are utilized to better simulate real-world behavior.

For instance, people do not move in consistent, prescribed ways. They move in regular ways most of the time with
contacts that are well defined, but sometimes they attend events (perhaps periodically or uniquely) that are not governed
by their regular movement patterns.

3.5.1 Event

An Event is an event that occurs at a particular location.
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An Event accepts the following parameters:

• xy, the xy coordinates of the location

• start_tick, the tick when the event begins

• groups, an iterable of group ids that are eligible for the event

• capacity, the number of subjects that should attend

• recurring, how often the event recurs (i.e. every nth tick); if set to 0, the event does not recur

When an Event concludes, the subject returns to its home location as specified in the dot matrix.

To schedule an event, you must pass a list of event objects to the events parameter.

To begin with, we’ll create a single Event object, called show, that occurs once on day 5.

from rknot.events import Event

params = {'square': 10, 'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}
group1 = dict(name='1', n=10, n_inf=5)

show = Event(name='show', xy=(5,5), start_tick=5, groups=[0], capacity=10)
events = [show]

sim = Sim(groups=group1, events=events, **params)
sim.run(dotlog=True)

chart = Chart(sim, figsize=(16,8), layout='dots_only', show_intro=False)
chart.to_html5_video()

alternative text

If you watch closely, you’ll see on Day 5 that all the dots seemingly disappear, save for one, at location (5,5).

In fact, all 10 dots are actually at that location at the same time.

We can confirm this by inspecting the Dot Matrix on that day via the dotlog attribute.

[22]: from rknot.dots import MATRIX_COL_LABELS as ML
sim.dotlog[4][:, ML['x']:ML['y']+1]

[22]: array([[5, 5],
[5, 5],
[5, 5],
[5, 5],
[5, 5],
[5, 5],
[5, 5],
[5, 5],
[5, 5],
[5, 5]])

We can see the event more clearly if we extend the duration to 10 days. We also significantly reduced the frame rate.

show = Event(name='show', xy=(5,5), start_tick=5, groups=[0], capacity=10,
→˓duration=10)
events = [show]

sim = Sim(groups=group1, events=events, **params)
sim.run()

(continues on next page)
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(continued from previous page)

chart = Chart(
sim, figsize=(16,8), dotsize=1000, interval=300,
layout='dots_only', show_intro=False, use_init_func=False

)
chart.to_html5.video()

alternative text

Many event objects can be specified at once, in various combinations of groups.

group1 = dict(name='1', n=10, n_inf=5)
group2 = dict(name='2', n=10, n_inf=0)

show = Event(name='show', xy=(5,5), start_tick=5, groups=[0,1], capacity=5,
→˓recurring=30)
game = Event(name='game', xy=(1,1), start_tick=5, groups=[0], capacity=5,
→˓recurring=14)
church = Event(name='church', xy=(1,1), start_tick=5, groups=[1], capacity=10,
→˓recurring=7)

groups = [group1, group2]
events = [show, game, church]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(
sim, interval=300, dotsize=1000, layout='dots_only', show_intro=False,
use_init_func=False

)
chart.to_html5_video()

alternative text

3.5.2 Travel

Travel is a special type of event that allows a subject to enter a gate.

When a dot enters a gate via a Travel object, its box and gate attributes are temporarily adjusted to match those of the
groups within the gate. The attributes revert when the event ends (determined by duration parameter).

Once inside the gate, the dot(s) are free to interact with other dots normally.

from rknot.events import Travel

params = {'square': 10, 'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}

group1 = dict(name='1', n=1, n_inf=1, box=[1,5,1,5], box_is_gated=True)
group2 = dict(name='2', n=10, n_inf=0, box=[6,10,6,10], box_is_gated=True)

visit = Travel(
name='visit', xy=[1,1], start_tick=3, groups=[1], capacity=1, duration=5,

→˓recurring=10
)

(continues on next page)
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groups = [group1, group2]
events = [visit]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(
sim, interval=200, dotsize=2000, layout='dots_only', show_intro=False
use_init_func=False

)
chartto_html5_video()

alternative text

Many unique layouturations can be achieved with this structure. Below, the group1 box will be vacated by the
solitary group1 dot (essentially switching places with a dot from group2).

from rknot.events import Travel

params = {'square': 10, 'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}

group1 = dict(name='1', n=1, n_inf=1, box=[1,5,1,5], box_is_gated=True)
group2 = dict(name='2', n=10, n_inf=0, box=[6,10,6,10], box_is_gated=True)

visit2 = Travel(
name='visit2', xy=[9,9], start_tick=3, groups=[0], capacity=1, duration=5,

→˓recurring=10
)
visit1 = Travel(

name='visit1', xy=[1,1], start_tick=3, groups=[1], capacity=1, duration=5,
→˓recurring=10
)
groups = [group1, group2]
events = [visit2, visit1]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(
sim, interval=200, dotsize=2000, layout='dots_only', show_intro=False,
use_init_func=False

)
chart.to_html5_video()

alternative text

3.5.3 Quarantine

A quarantine is an event object that makes several changes to a dots state in order to restrict its movement.

When a dot is quarantined,

1. it goes back to its home location (see Dot Matrix)

2. its boxes and gates are reset to match its group
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3. its mover function is changed to ‘quarantine’

In addition, a Quarantine object will create a additional restriction objects that disallow events during the quarantine
(see Restrictions below)

from rknot.events import Quarantine

params = {'square': 10, 'R0': 2.5, 'days': 50, 'imndur': 365, 'infdur': 365}

group1 = dict(name='1', n=2, n_inf=1, box=[1,5,1,5], box_is_gated=True)
group2 = dict(name='2', n=2, n_inf=0, box=[6,10,6,10], box_is_gated=True)

quar = Quarantine(name='all', start_tick=5, groups=[0,1], duration=30)

groups = [group1, group2]
events = [quar]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(
sim, interval=200, dotsize=2000, layout='dots_only', show_intro=False,
use_init_func=False

)
chart.to_html5_video()

alternative text

We can see from above that once in quaratine, the subjects barely move. We can include events in our structure. The
events will be restricted during the quarantine period, then will resume when the quarantine ends.

params = {'square': 10, 'R0': 2.5, 'days': 100, 'imndur': 365, 'infdur': 365}

group1 = dict(name='1', n=1, n_inf=1, box=[1,5,1,5], box_is_gated=True)
group2 = dict(name='2', n=10, n_inf=0, box=[6,10,6,10], box_is_gated=True)

show = Event(name='show', xy=(6,6), start_tick=5, groups=[1], capacity=5,
→˓recurring=30)
visit2 = Travel(

name='visit2', xy=[9,9], start_tick=3, groups=[0], capacity=1, duration=5,
→˓recurring=10
)
visit1 = Travel(

name='visit1', xy=[1,1], start_tick=3, groups=[1], capacity=1, duration=5,
→˓recurring=10
)

groups = [group1, group2]
events = [show, visit2, visit1, quar]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(
sim, interval=200, dotsize=2000, layout='dots_only', show_intro=False,
use_init_func=False,

)
chart.to_html5_video()
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alternative text

3.5.4 Social Distancing

Event to mimick social distancing practices.

Social distancing is assumed to impact the Transmission Factor, 𝜏 of each dot. The core hypothesis is that prac-
tices such as maintaining 6-feet of distance or mask wearing don’t reduce the number of contacts, but do reduce the
likelihood that a contact will result in a new infection (ceterus paribus).

You can see use of this object here.

3.5.5 Vaccination

TBD

3.5.6 Restrictions

A restriction object restricts attendance to events that fall within the specified criteria. Each event has a restricted
attribute that defaults to False. A restriction object filters out events from the event schedule by setting
restricted=True for each event that satisfies the criteria.

To clarify, a Restriction is not an event. Events act on dots. Restrictions act on events.

Restrictions have potential as a versatile tool that can be used to investigate the impact of various government and
business policy decisions that impact spread.

The Restriction object has a criteria parameter that accepts a dict, with keywords related to event object at-
tributes. Acceptable criteria keys are currently:
capacity name ticks groups loc_id

The simplest way to restrict an event is by its name:

from rknot.events import Restriction

params = {'square': 10, 'R0': 2.5, 'days': 100, 'imndur': 365, 'infdur': 365}

group1 = dict(name='1', n=10, n_inf=1, box=[1,5,1,5], box_is_gated=True)
group2 = dict(name='2', n=10, n_inf=0, box=[6,10,6,10], box_is_gated=True)

show1 = Event(name='show1', xy=(1,1), start_tick=2, groups=[0], capacity=10,
→˓recurring=2)
show2 = Event(name='show2', xy=(10,10), start_tick=2, groups=[1], capacity=10,
→˓recurring=2)

criteria = {'name': 'show1'}
res1 = Restriction(name='no_show1', start_tick=10, duration=20, criteria=criteria)

groups = [group1, group2]

(continues on next page)
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events = [show1, show2, res1]

sim = Sim(groups=groups, events=events, **params)
sim.run(dotlog=True)

chart = Chart(
sim, interval=300, dotsize=2000, layout='dots_only', show_intro=False,
use_init_func=False,

)
chart.to_html5_video()

alternative text

In the above, we can see that every other day both group boxes have events that are attended by all dots in the group.

But on day 10, the group1 dots no longer converge on location (1,1). Instead, they are spread throughout their box.
So res1 has successfully restricted attendance to show1.

Unlike Quarantine objects, however, the group1 dots have not changed their standard movement patterns.

We can restrict multiple events via the other criteria. Next we will restrict events based on their capacity. Events with
more than 5 subjects in attendance will be restricted.

criteria = {'capacity': 5}
res1 = Restriction(name='cap5', start_tick=10, duration=20, criteria=criteria)

groups = [group1, group2]
events = [show1, show2, res1]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(
sim, interval=300, dotsize=2000, layout='dots_only', show_intro=False,
use_init_func=False,

)
chart.to_html5_video()

alternative text

In the above we see that neither of the groups had events from day 10 onward during the restriction period.

Restrictions can be chained together as desired to form a complex and tailored policy recipe for the population of the
sim. See this example.

3.6 Dot Matrix

The dot matrix is essentially RKnot’s canonical form of data structure. The matrix is simply a 2D numpy array of
shape (n, 23) with each of the n rows representing a dot and each column representing an attribute.

More typical Python objects have been eschewed in favor the Dot Matrix because:

• RKnot relies heavily on Ray for parallel processing and Numba for just-in-time compilation and vectorization
to improve processing speed.

• Numpy arrays have several advantages in Ray including rapid serialization and ease of batching.

38 Chapter 3. Key Concepts

https://docs.ray.io/en/latest/
https://numba.pydata.org/
https://ray-project.github.io/2017/10/15/fast-python-serialization-with-ray-and-arrow.html


RKnot

• Numba also integrates well with numpy, supporting many of its features and leads to major performance
improvements.

The dot matrix is created inside a Ray actor at instantiation and is only passed back to the main Sim object when the
simulation is completed.

It can be accessed via the dots attribute. Below is a sample of 4 dots:

[33]: sim.dots[:4]

[33]: array([[ 0, 0, 1, 0, 0, 1, 1, 65, 7, 6, 54, 6, 5,
0, 0, -1, 0, 100, 650, 0, -1, 365, 730],

[ 1, 0, 1, 0, 0, 1, 1, 77, 8, 8, 22, 3, 3,
0, 0, -1, 0, 100, 650, 0, -1, 365, 730],

[ 2, 0, 1, 0, 0, 1, 1, 11, 2, 2, 88, 9, 9,
0, 0, -1, 0, 100, 650, 0, -1, 365, 730],

[ 3, 0, 1, 0, 0, 1, 1, 27, 3, 8, 96, 10, 7,
0, 0, -1, 0, 100, 650, 42, -1, 407, 772]])

The column attributes have corresponding labels:

[11]: from rknot.dots import MATRIX_LABELS
print (MATRIX_LABELS)

['id', 'group_id', 'is_alive', 'is_vaxxed', 'is_sus', 'is_inf', 'ever_inf', 'loc_id',
→˓'x', 'y', 'home_id', 'homex', 'homey', 'go_home', 'box_id', 'event_id', 'mover',
→˓'mover_p', 'tmf', 'ifr', 'inf_tick', 'depart', 'recover', 'relapse']

With these labels, the 4 dot matrix above can be shown in a table.

id group_idis_aliveis_vaxxedis_susis_infever_infloc_idx y home_idhomexhomeygo_homebox_idevent_idmovermover_ptmf ifr inf_tickde-
part

re-
cover

re-
lapse

0 0 1 0 1 0 0 46 6 7 36 5 5 0 0 -
1

4 -
999

100 0 -
1

-
1

-
1

-
1

1 0 1 0 1 0 0 61 8 6 27 4 4 0 0 -
1

4 -
999

100 0 -
1

-
1

-
1

-
1

2 0 1 0 1 0 0 52 7 5 58 8 3 0 0 -
1

4 -
999

100 0 -
1

-
1

-
1

-
1

3 0 1 0 1 0 0 20 3 5 3 1 4 0 0 -
1

4 -
999

100 0 -
1

-
1

-
1

-
1

4 0 1 0 1 0 0 15 2 8 24 4 1 0 0 -
1

4 -
999

100 0 -
1

-
1

-
1

-
1

There are several data types at work:

• categorical integers; used to identify related objects

– id, group_id, loc_id, home_id, box_id, event_id, mover

• boolean integers; used to set boolean flags

– 0 means False and 1 means True

– is_alive, is_vaxxed, is_sus, is_inf, ever_inf, go_home

• coordinates; used to identify locations

– x, y, homex, homey

• event ticks; integers that trigger an event on the given tick

– depart, recover, relapse
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• factors; scaled integers that must be unscaled before being used in multiplicative formulas

– tmf, ifr

The column attributes are defined as follows:

Label Definition Label Definition
id the subject’s unique identifier homey y coord of the subject’s home location
group_id the unique identifier of the sub-

ject’s group
go_home is the subject going home on the next move?

is_alive Is the subject alive? box_id id of the box the subject belongs to
is_vaxxed Has the subject been vaccinated? event_id id of the event the subject is attending
is_sus Is the subject susceptible to infec-

tion?
mover id of the subject’s mover function

is_inf Is the subject infected? mover_p p-value of custom mover function
ever_inf Has the subject ever been in-

fected?
tmf the subject’s transmission factor

loc_id id of the subject’s current location ifr the subject’s infection fatality rate
x x coord of the subject’s current lo-

cation
inf_tick the tick a subject is infected

y y coord of the subject’s curretn lo-
cation

depart the tick an infected subject will depart

home_id id of the subject’s home location recover the tick an infected subject will no longer be infected
or susceptible

homex x coord of the subject’s home lo-
cation

relapse the tick a recovered subject will again become suscep-
tible
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Sizing

Appropriate sizing of a simulation environment is more art than science but we can use several tools in the RKnot
package and the scientific literature to approximate appropriate attributes and initial conditions.

Our main guides for appropriate sizing:

1. Actual 𝑅0 should be close to target 𝑅0

2. Contact rate should follow a gamma distribution with parameters found in the Hutch model.

3. 𝑅0 distribution should replicate the Endo distribution.

Our main tools for adjusting contact rates and 𝑅0 distribution are:

• Density

• Mover functions

• Events

• VBoxes

4.1 Importance of Distributions

Both the distribution of contacts and individual 𝑅0 are important considerations when formulating a realistic model
of viral spread.

In terms of contacts, both frequency and timing are important. All else equal, an infected individual will cause more
secondary infections if they have more contacts. BUT an infected individual contacting the same number of people at
two different times is likely to cause more secondary infections at the time of greater viral load.

The SIR model makes many simplifying assumptions that fail to replicate real world spread. In particular, SIR is
characterized by:

• Uniform, average contact rates

• Constant transmission risk
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These two assumptions result in normally distributed contact rates among all individuals in an environment and nor-
mally distributed individual 𝑅0.

Endo et al, however, have suggested that 70%+ of all sars-cov-2 infections lead to :math:‘underline{text{NO}}‘ sec-
ondary infections. And that the vast majority of secondary infections are due to a small minority of super-spreader
carriers.

To account for this, the Hutch team modelled contacts with a gamma distribution, which (relative to the Gaussian)
favors many more instances of 0 contacts, but also allows for a very long tail of large contacts depending on the
dispersion parameter.

4.2 Constant Contact Rate and Transmission Risk

To replicate the Hutch approach in RKnot, we must first understand contact and transmission dynamics in more
generalized scensarios.

We will use the looper helper function to run 1,000 interations of simulations for two environments:

1. Equal Mover scenario with density=1.

2. Equal Mover with density=5

from rknot.notebook import looper

params = dict(density=1, R0=2.5, infdur=14, days=14, sterile=True,)
group = dict(name='all', n=10000, n_inf=1, ifr=0, mover='equal',)
contacts_1, nsecs_1, _, __ = looper(n=1000, groups=group, **params)

params['density'] = 5
contacts_5, nsecs_5, _, __ = looper(n=1000, groups=group, **params)

4.2.1 Daily Contact Distribution

The daily contact mean and variance are found simply as contacts_1.mean(), contacts_1.var(), etc. For
each environment, the mean, variance, and density are about equal.

Seen as per table below:
<IPython.core.display.HTML object>

We can also see below that daily contacts are normally distributed in both environments (technically, binomially
distributed as discussed here).

42 Chapter 4. Sizing

https://wellcomeopenresearch.org/articles/5-67#ref-12
https://www.medrxiv.org/content/10.1101/2020.08.07.20169920v3.full.pdf


RKnot

<IPython.core.display.HTML object>

4.2.2 Curve Details

In the table below, we show the results of the simulations across the two environments.
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<IPython.core.display.HTML object>

Both environments do a decent job of meeting the expected HIT. With 𝑅0 of 2.5 (and assuming SIR conditions), HIT
is generally understood to be 1 − 1/𝑅0 = 1 − 1/2.5 = 60%

That said, this is in part due to the fact that ~10% of all simulations ended with no secondary infections, so most
simulations ended with between 65% and 75% HIT as per below:

4.2.3 Secondary Infection Distribution

Now, we compare the 𝑅0 generated in each simulation of the two environments. Each chart below shows the actual
number of secondary infections generated in each of 1,000 simulations with two different distributions overlayed.

• a Binomial distribution deterimined as follows:

𝐵(𝑛, 𝑝) = 𝐵(infdur * 𝑘, 𝑅0/infdur
𝑘

)

𝑤ℎ𝑒𝑟𝑒 : 𝑛 = 𝑐 = infdur * 𝑘
𝑝 = 𝑅0/𝑘/infdur

𝑐 = average total contacts

𝑘 = average daily contact rate(4.1)

𝑅0

infdur number of infections occuring during each day and 𝑅0/infdur
𝑘

infections occuring per contact.
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• the Endo distribution determined as follows:

Endo(𝑅0, 𝜔)

where: 𝜔 is the overdispersion parameter(4.2)

The Endo model is fairly complex so readers are encouraged to research it here. The paper determined an optimized
value of 𝜔 of 0.1 sars-cov-2, which will be used for our purposes.
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We can see both environments do a good job of generating ~2.5 secondary infections, on average.

We also see that both have 𝑅0 distributions that fit the binomial distribution, not the Endo.
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4.3 Movement Changes

We have seen the impact of density on the properties of the spread. Now we investigate the impact of movement
patterns.

4.3.1 Local Bias

local patterns restrict the movement of a dot to only the nearest available locations. This is achieved using a
geometric distribution with the p parameter governing the amount of restriction. The larger the p, the greater the
restriction.

This is illustrated below:

There are several pre-defined mover functions, which can be utilized by providing a string or integer value to the
mover attribute of a Group. The local mover function, for instance, utilizes a geometric distribution with p-value
of 0.6.

The mover attribute also accepts a float value, which is then provided as the specified p-value to a geometric distri-
bution.

With this feature, we can generate simulations across a range of p-values.

Then, we can use the helper function find_all_contacts to generate a 2d array of the number of the contacts on
each tick for every dot in each sim. Then multiply the contacts the transmission risk curve to get the expected 𝑅0 for
every dot in the sim as though they were infected initially.
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Repeat this for each p-value. Here, we cannot use looper, because the properties of each sim will change slightly,
but we can use the recycler decorator to simplify the loop and pass existing server and worker actors if they
are available.

from rknot import Sim
from rknot.sim import recycler
from rknot.notebook import find_all_contacts

params = dict(density=.75, R0=2.5, infdur=14, days=14, sterile=True, n_workers=1)
group = dict(name='all', n=10000, n_inf=1, ifr=0,)

p = np.concatenate((p, np.linspace(0.96, .99, 4)))

dotlogs = np.zeros(shape=(p.shape[0], params['days']+1, group['n'], len(ML)),
→˓dtype=np.int32)
all_contacts = np.zeros(shape=(p.shape[0], group['n'], params['days']), dtype=np.
→˓int32)
tmrs = np.zeros(shape=(p.shape[0], params['infdur']))

sim_cycler = recycler(p.shape[0])
for i in trange(p.shape[0]):

group['mover'] = p[i]
sim = sim_cycler(groups=group, pbar=False, **params)
sim.run(dotlog=True, pbar=False)
dotlogs[i] = sim.dotlog
all_contacts[i] = nbf.find_all_contacts(sim.dotlog, MLNB)
tmrs[i] = sim.tmrs

contact_means = all_contacts.sum(axis=2).mean(axis=1) / params['days']
eR0s = np.zeros(all_contacts.shape[0])
for i in range(eR0s.shape[0]):

eR0_by_dot = tmrs[i] * all_contacts[i]
eR0_mu = eR0_by_dot.sum(axis=1).mean()
eR0s[i] = eR0_mu

We can then chart 𝐸(𝑅0) against p-value to see the impact of restricting movement on spread.

Further, we show the change in mean contacts against p-value (which is a similar curve) and fit that curve to a
5-degree polynomial. This will be helpful in building Complex Environments.

We can also easily accomodate densities less than one by simply multiplying the polyfit parameters by the density.
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We see that 𝑅0 has an inverse relationship to restricted movement (i.e. spread increases as populations become more
well-mixed). This, of course, makes sense and is a fundamental premise of viral spread theory.

However what cannot be overlooked is how closely 𝑅0 in a moderately restricted environment resembles a completely
well-mixed environment. And yet we know that the local mover function (with p-value of 0.6) results in a very
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different long-term spread curve.

Further, each p-value results in normally-distributed contacts. We show this for a handful of p-values below.
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4.3.2 Interplay of Movement and Density

We can also run each p-value against a range of densities.

params = dict(
R0=2.5,
infdur=14,
days=14,
sterile=True,
pbar=False,
pbar_leave=False,
reset_env=True,

)
group = dict(

name='all',
n=10000,
n_inf=1,
ifr=0,

)
densities = np.array([.5, .75, 1, 2.5, 5])

dotlogs = np.zeros(shape=(
p.shape[0], densities.shape[0], params['days']+1, group['n'], len(ML)

), dtype=np.int32
)
all_contacts = np.zeros(shape=(

p.shape[0], densities.shape[0], group['n'], params['days']
), dtype=np.int32

)
tmrs = np.zeros(shape=(densities.shape[0], params['infdur']))

n_iters = p.shape[0]*densities.shape[0]
pbar = tqdm(total=n_iters)
sim_cycler = recycler(n_iters)
for i in range(p.shape[0]):

group['mover'] = p[i]
for j in range(densities.shape[0]):

sim = sim_cycler(groups=group, density=densities[j], **params)
sim.run(dotlog=True, pbar=False)

dotlogs[i, j] = sim.dotlog
all_contacts[i, j] = find_all_contacts(sim.dotlog, MLNB)
tmrs[j] = sim.tmrs

pbar.update(1)

Then find the expected 𝑅0 for each combination:

eR0s = np.zeros(shape=(all_contacts.shape[0], all_contacts.shape[1]))
for i in range(eR0s.shape[0]):

for j in range(eR0s.shape[1]):
eR0_by_dot = tmrs[j] * all_contacts[i, j]
eR0_mu = eR0_by_dot.sum(axis=1).mean()
eR0s[i, j] = eR0_mu

And below we show 𝑅0, contact 𝜇, and contact variance for a subset of the p-value/density combinations.
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𝜌 =
0.5

𝜌 =
0.75

𝜌 =
1.0

𝜌 =
2.5

𝜌 =
5.0

p-
value

𝑅0 𝑘 𝜎2 𝑅0 𝑘 𝜎2 𝑅0 𝑘 𝜎2 𝑅0 𝑘 𝜎2 𝑅0 𝑘 𝜎2

0.05 2.60 0.52 0.52 2.61 0.78 0.80 2.60 1.04 1.08 2.54 2.48 2.55 2.52 4.98 5.12
0.20 2.51 0.50 0.50 2.52 0.75 0.75 2.51 1.00 1.00 2.55 2.50 2.60 2.57 5.09 5.56
0.35 2.45 0.49 0.49 2.48 0.74 0.73 2.48 0.99 1.01 2.52 2.46 2.46 2.53 5.00 5.20
0.50 2.41 0.48 0.48 2.41 0.72 0.70 2.43 0.97 0.96 2.50 2.44 2.41 2.51 4.96 4.99
0.65 2.30 0.46 0.45 2.32 0.69 0.67 2.29 0.92 0.88 2.50 2.44 2.46 2.51 4.96 5.06
0.80 2.04 0.41 0.40 2.05 0.61 0.58 2.03 0.81 0.75 2.54 2.48 2.58 2.50 4.94 4.95
0.95 1.17 0.23 0.22 1.14 0.34 0.33 1.17 0.47 0.43 2.50 2.44 2.45 2.48 4.90 4.66
0.98 0.64 0.13 0.12 0.60 0.18 0.17 0.61 0.25 0.23 2.49 2.43 2.40 2.47 4.89 4.74

The table above has some interesting properties:

1. As expected, mean contacts, 𝑘, increases with density.

2. Also, for densities of 1 or less, 𝑘 decreases with p-value.

3. Also, for densities of 1 or less, 𝑅0 decreases with density.

HOWEVER, when density > 1, all of the values remain almost constant for each density regardless of p-value. When
a grid is overloaded with dots, by definition the same number of dots are expected at each location regardless of the
movement pattern (on average).

4.3.3 Location Clustering

We should also mention the phenomena of dot clustering. We can determine how many different locations are occupied
by at least one dot at each tick as follows:

[27]: unq_locs = np.zeros(shape=dotlogs.shape[:3])
for i in range(dotlogs.shape[0]):

for j in range(dotlogs.shape[1]):
for k in range(dotlogs.shape[2]):

unq_locs[i,j,k] = np.unique(dotlogs[i,j,k,:,ML['loc_id']]).shape[0]

In the chart below, we can see that each sim with density < 1, starts with dots occupying 10,000 unique locations (so
each dot gets its own location), but over time dots cluster to a smaller number of locations.

The clustering appears asymptotic to a long-term value. That value appears to be inversely related to the density (so
lower density means more locations and less clustering). And the speed at which that value is reached is related to the
p-value.

For sims with density > 1, there is no clustering.
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Below we more clearly see the relationship between p-value and speed of clustering:

1. For density of 0.5:

• p-value is inversely related to clustering speed. i.e. movement patterns with higher p-values cluster slower

2. For density of 5:

• there is no clustering and number of unique locations varies randomly in a tight range.
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4.3.4 𝑅0 Distribution

For 𝑅0 distribution, we must loop through a large number of simulations. We will focus only on p-values [.25, .65,
.95] and densities [.5, 1].

Again, we utilize the looper function.

from rknot.notebook import looper

params = dict(
R0=2.5,
infdur=14,

(continues on next page)
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(continued from previous page)

days=14,
)
group = dict(

name='all',
n=10000,
n_inf=1,
ifr=0,

)

p = np.array([.25, .65, .95])
d = np.array([.5, 1])
n = 1000

nsecs = np.zeros(shape=(3, 2, n, params['days']))
pbar = tqdm(total=p.shape[0]*d.shape[0])
for i in range(p.shape[0]):

group['mover'] = p[i]
for j in range(d.shape[0]):

params['density'] = d[j]
_, loop_nsecs, _ = looper(n=n, groups=group, **params)

nsecs[i, j] = loop_nsecs

pbar.update(1)
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Here we have a few findings:

1. There is one decent fit for the Endo model, which comes at the lowest density and the highest p-value.

2. The closest fit to the Binomial distribution comes at density=1 and the lowest p-value.

4.4 Complex Environments

We can use our findings to structure more complex environments that more appropriately mock real world interactions.

Here, we will incorporate a dynamic transmission curve with 𝑅0 dispersion that fits the Endo model.

Hutch

As noted previously, with respect to sars-cov-2, the Hutch model uses a Gamma distribution to govern real world
interactions as per below:

𝑐𝑡 ≈ Γ(𝛼, 𝜃) ≈ Γ(
𝑘

𝜃
, 𝜃)

𝛼 is the shape parameter,

𝜇 = 𝑘, or the average daily contact rate

𝜃 is the dispersion parameter(4.3)
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The scaling parameters are related to mean and variance as follows:

𝑘 = 𝛼𝜃

𝜎2 = 𝛼𝜃2(4.4)

The Hutch model combines this approach to contact distributions with a model for dynamic viral load to estimate
contact level parameters for viral transmission.

They detail two sets of parameters for two 𝑅0 outcomes.

𝑅0 = 1.8

• mean 𝑅0 of 1.8

• 4 mean contacts per day, 𝑘

• 40 dispersion, 𝜃

• 𝜆 of 10**7 (a parameter influencing the relative infectiousness of an infected subjected)

𝑅0 = 2.8

• mean 𝑅0 of 2.8

• 20 mean contacts per day, 𝑘

• 30 dispersion, 𝜃

• 𝜆 of 10**7.5

The parameter best fit for both outcomes was determined on a number of external inputs including adherence to the
findings of the Endo model that >70%+ primary infections caused no secondary infections.
<IPython.core.display.HTML object>

Process

Our goal is to replicate both the Hutch model gamma distribution (both 𝑘 and 𝜃) and the Endo model 𝑅0 distribution.

RKnot currently has 4 tools for increasing contact rate:

• changing density

• changing movement patterns

• events

• vboxes

We have seen that increasing density does increase 𝑘, but that both contacts and 𝑅0 are normally/binomially dis-
tributed. So increasing density is not appropriate.

We have also seen that changing movement patterns only has an impact where density < 1 and can only increase it up
to the density. So, if our density must be <= 1, our movement pattern can only ever increase density to <= 1.

So we are left with events and vboxes.

Thus, our process for building complex environments is as follows:
<IPython.core.display.HTML object>
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4.4.1 Hutch Model: 𝑅0 of 1.8

We will demonstrate the building of a complex environment using 𝑅0 1.8 Hutch model.

Our environment will have with following initial conditions:

• Population of 10,000

• Initial infected of 1

• Density of 1

• Length of 30 days

• 0.98 p-value for mover

Our model targets: + 𝑅0 = 1.8 + 𝑘 = 4 + 𝜃 = 40

Exploring the Contact Distribution

We can visualize the expected contact rate distribution by generating a random set of contacts on the gamma distribu-
tion.

We know that there should be 𝑛𝑑𝑜𝑡𝑠 * 𝑛𝑑𝑎𝑦𝑠 number of records of contacts (300,000) and so can show the number of
occurences of each amount of contacts from a gamma sample:

The initial parameters are as follows:

[39]: n = 10000
days = 30
size = n*days
density = 1
gloc = 2
sim_tmr = tmr

mu = 4
theta = 40
tgt_R0 = 1.8

From these, we can generate a sample gamma distribution as follows:

[40]: alpha = mu / theta
k_gam = np.random.gamma(alpha, size=size, scale=theta)

k_gam can be passed to a histogram and results in the folllowing:
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By far, most dot-days must have 0 contacts. Above we zoomed in on the first 10 contact levels to give a sense for the
most pertinent values.

Below we show the distribution tail. Remember that while the number of occurences is relatively low, given the contact
level is so high they still produce a large number of contacts.

For instance:
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• 2,000 dot-days of 2 contacts produces 4,000 contacts

• 40 dot-days of 100 contacts produces 40,000 contacts

From the distribution above, we can focus on the contacts that must be event-driven. For our sim, we have chosen
contacts of 2 or more (equal to event apacity of 3) to result from events.

Thus, events must replicate the distribution below, which is still a gamma distribution, slightly modified from the
original.
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Creating Events
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The number of contacts for a single dot at an event is simply the capacity minus 1, since a dot cannot contact itself.

𝑘𝑒 = cap𝑒 − 1

where: 𝑘𝑒 = contact level for event e

cap𝑒 = capacity for event e(4.5)

Multiplying again for every dot at the event gives us the total contacts for all dots:

𝑐𝑒 = (𝑐𝑎𝑝𝑒 − 1) * 𝑐𝑎𝑝𝑒
where: 𝑐𝑒 = total contacts for event e(4.6)

Remember that our target 𝑘 is the average contact rate per dot, so the number of events should be structured on a per
dot basis. The number of events required for a particular contact level, 𝑘, then, is:

𝑛𝑒,𝑗 =
𝑘𝑡𝑔𝑡,𝑖
𝑐𝑎𝑝𝑒,𝑗

i = contact level

j = i + 1 = event capacity(4.7)

[44]: c_eve = c_eve.astype(np.int32)
caps = np.arange(c_eve.shape[0]) + 1

n_events = c_eve[gloc:] / caps[gloc:]

RKnot’s ability to replicate the Gamma distribution fails on the long tail of the distribution when the number of
occurences of a specified contact level is fewer than the contacts that would be generated by a single event.

For instance, the Hutch gamma distribution results in ~40 dot-days with 100 contacts. RKnot can only generate 100
contacts through a 100 contact event and a 100 contact event generates (100 − 1) * 100 = 9, 900 contacts, far more
than required.

Our current hack-fix is to regroup and redistribute all contact occurences above that threshold into events. This results
in a tail that is less evenly distributed.

A better solution would be to increase the number of ticks per day, which would allow for many more independent
streams of contact distributions among dots. This feature will be available in future versions.

[45]: i_events = np.argwhere(n_events < 1 ).ravel()

i_large = i_events[0]

(continues on next page)
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k_to_replicate = n_events[i_large:]*caps[gloc + i_large:]*caps[gloc + i_large:]

total = k_to_replicate.sum()
skip = 70
add_caps = []
for cap in range(i_large + skip + 1, i_large + k_to_replicate.shape[0] + 1, skip):

total = total - ((cap - 1)*cap)
if total < 0:

break
else:

add_caps.append(cap)
n_events[cap - 1] = 1

n_events = np.where(n_events >= 1, n_events, 0).astype(np.int32)

With the number of events for each capacity determined, we can assign event objects.

To do so, we:

• utilize the “baseus” groups used in the SIR analysis.

• assign a p-value of .98 to the mover function of group.

– determined through a trial and error process that best fit the Hutch distribution.

• randomly assign each event a start tick between 1 and 30, which is the length of the simulation.

• assign each event to vbox=0

• as all events will occur inside a vbox, a Travel event must be used to transport them to the event location.

from rknot.sims import baseus
from rknot.events import Travel

groups = baseus.groups
groups[2]['n_inf'] = 0
for group in groups:

group['mover'] = .98

params = {'days': days, 'tmr_curve': sim_tmr, 'density': density, 'sterile': True}

event_groups = []
for i in np.arange(n_events.shape[0]):

if n_events[i] >= 1:
event_group = {'name': f'{i+gloc+1}n', 'n': n_events[i], 'groups': [0,1,2,3],

→˓'capacity': i+gloc+1}
event_groups.append(event_group)

events = []
for i, e in enumerate(event_groups):

for j in range(e['n']):
start_tick = np.random.randint(1, 31, 1, dtype=np.int32)
events.append(

Travel(name='{}_{}'.format(e['name'], j), start_tick=start_tick[0],
→˓groups=e['groups'], capacity=e['capacity'], vbox=0)

)

In the chart below, we can see the distribution of the capacity of the events generated by this process over the life of
the simulation.
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So, for the length of the simulation between 18 to 26% of the population will be attending events each day of the
simulation.

Below, we can see that for the lower contact levels, this approach generates a near perfect replica of the required
Gamma distribution.
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When we focus on contact levels of 100+, however, you can see that we only generate contacts at 3 levels.

68 Chapter 4. Sizing



RKnot

Forming the Remaining Environment

With contact levels 2+ settled, we must set the non-event environment such that it generates mainly 0 contacts.

First, we find the average density of the grid (excluding the vbox) during the sim. Only dots not attending events will
be in the main grid, so density is as follows:

[51]: n_dots_at_events = np.array(list(c.values())).mean()
n_dots_not_events = n - n_dots_at_events

d = n_dots_not_events / n # given density of 1

print (np.around(d, 2))

0.78

The density of the grid excluding dots on events will be 0.78.So we can find the expected 𝑘 of that space using the
polyfit equation we found above to find the corresponding variance and providing the p-value for group movement.

And then apply 𝑘 to a normal distribution to find the expected contacts for the non-event space.

[54]: f = np.poly1d(d*z)
mu_space = f(.98)
var_space = mu_space
x = np.linspace(0, 5, 6)
c_non = st.norm.pdf(x, mu_space, np.sqrt(var_space))
c_non = d*n*30*c_non

[57]: text = 'And so the expect 0 contacts occurences are right in line with the target: '
text += f'\n\n {c_non[0]:,.0f} vs. {c_gam[0]:,.0f}'
text += '\n\nThere is greater delta in the 1 contact occurences but still fairly
→˓close: ' (continues on next page)
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text += f'\n\n {c_non[1]:,.0f} vs. {c_gam[1]:,.0f}'

md(text)

And so the expect 0 contacts occurences are right in line with the target:

228,464 vs. 217,740

There is greater delta in the 1 contact occurences but still fairly close:

20,230 vs. 15,090

Thus, we expect the non-event space will result in 200,000+ dot days with no contacts, right in line with Hutch gamma.

The final step in preparing the simulation environment is determing the size of the VBox. The chart below shows the
number of events occuring on each tick in the Sim.

Above we can see that there are typically ~300 events occuring on a given tick.

The vbox must allow for each event to have its own location, so the vbox should have enough locations to support the
maximum number of events occuring on the same tick, which is:

[59]: start_ticks = np.array([e.start_tick for e in events])
n_events_by_tick = np.bincount(start_ticks)
n_events_by_tick.max()

[59]: 344

The vbox must have 344 locations.

Run the Sim

We will run a single Sim to use for all_contacts comparison:
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vbox = n_events_by_tick.max()
sim = Sim(groups=groups, events=events, vboxes=vbox, **params)
sim.run(dotlog=True)

all_contacts = find_all_contacts(sim.dotlog, MLNB)
eR0_all = np.sum(all_contacts[:,:sim_tmr.shape[0]]*sim_tmr, axis=1).mean()

We can see from the outputs that the sim produces fairly similar outcomes to those desired.

Results

The sim reproduced 𝑅0 as desired, however, contact rate is slightly below target and theta slightly over. This is likely
the result of the long-tail issues described earlier.
<IPython.core.display.HTML object>

And the contact distribution visually fits the desired Gamma almost perfectly (except for contact levels > 100 as
previously noted).
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And that the expected 𝑅0 distribtion is a much stronger fit for the Endo model (although still underweight slightly to
0 infection outcomes).
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Run a Larger Dataset

The all_contacts method is good way to get a quick read on the viability of an environment, however, it is still
only a rough estimate. Truly reliable statistics can only come from running the simulation many times.

We will loop through 1,000 sims:

n = 1000
contacts, nsecs, results, exceptions = looper(groups, n, params['density'], params[
→˓'days'], tmr=sim_tmr, events=events, vboxes=vbox)

Results

[68]: eR0 = np.mean(contacts.reshape(-1,sim_tmr.shape[0])*sim_tmr, axis=0).sum()
R0 = nsecs.sum(axis=1).mean()

<IPython.core.display.HTML object>
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The above iterations set sterile=True, in order to isolate the contacts and secondary infections of just the initial
infected.

We can learn more about the outcomes in the simulation by again using looper and setting sterile=False,
days=365. We will complete just 250 iterations, because each sim will run longer.

n = 250
days = 365
contacts, nsecs, results, exceptions = looper(groups, n, density, days, tmr=sim_tmr,
→˓events=events, vboxes=vbox, sterile=False)

<IPython.core.display.HTML object>
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CHAPTER 5

SIR: Factors Influencing Spread

REPLICABILITY

Randomness is in an important factor in RKnot’s approach to simulation (and frankly in real-word viral transmission),
so the results of the sims below will not be repeatable with each iteration. The below examples are meant to show
general differences based on state; further analysis should run the same simulation multiple times to see the mean
impact.

5.1 Base US Simulation

To explore the various concepts of RKnot and viral spread, we’ll use a simulation design based on CDC Best Planning
Scenario guidelines for COVID-19 characteristics including:

• 𝑅0 2.5

• IFR for each of 4 age groups

– 0-19: 0.003%

– 20-49: 0.02%

– 50-69: 0.5%

– 70+: 5.4%

Other assumptions:

• Population of 10, 0001

• Initial Infected of 2

• Duration of Infectiousness 14 days2

• Duration of Immunity 365 days

• Density of ~1 subject per location (dlevel='med')

79

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html


RKnot

1proportionately split among the 4 age groups to match US census data.
2equal likelihood of transmission on any day (i.e. no viral load curve)

US Census Data

5.2 Natural

5.2.1 1. Equal

The first simulation makes the most homogeneous assumptions.

• No group is restricted in terms of movement.

• All dots are able to interact with one another.

• All dots are susceptible at initiation.

• All dots are equally likely to move to any dot on the grid (mover='equal')

The basic layout is below. These parameters can also be imported from rknot.sims.baseus for convenienve.

group1 = dict(
name='0-19',
n=2700,
n_inf=0,
ifr=0.00003,
mover='equal',

)
group2 = dict(

name='20-49',
n=4100,
n_inf=1,
ifr=0.0002,
mover='equal',

)
group3 = dict(

name='50-69',
n=2300,
n_inf=1,
ifr=0.005,
mover='equal',

)
group4 = dict(

name='70+',
n=900,
n_inf=0,
ifr=0.054,
mover='equal',

)
groups = [group1, group2, group3, group4]
params = {'dlevel': 'med', 'Ro':2.5, 'days': 365, 'imndur': 365, 'infdur': 14}

We instantiate a new sim by passing groups and params. We can also flag details to get some information
about the Sim structure.
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from rknot import Sim, Chart
sim = Sim(groups=groups, details=True, **params)
sim.run()

---------------------------------------------------------------------------------
| SIM DETAILS |
|-------------------------------------------------------------------------------|
| Boundary| [ 1 45 1 45]| Locations| 2,025|
|-------------------|-------------------|-------------------|-------------------|
| Population| 10,000| Density| 4.94|
|-------------------|-------------------|-------------------|-------------------|
| Contact Rate| 4.94| | |
|-------------------|-------------------|-------------------|-------------------|

Running the animation will result in a video as per below:

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

alternative text

Note embedded videos are used for convenience purposes. Given the random processes involved, running the same
code will produce slightly different results each time.
Results:

Peak 37%
HIT 67%
Total 87%
Fatalities 0.55%
% > 70 42%
IFR 0.63%
Days to Peak 72

In this scenario, RKnot fairly closely replicates the curve of a standard SIR model, which expects HIT of 60% for 𝑅0

of 2.5 (HIT = 1 - 1 / 𝑅0).

Variation from the standard SIR model will always result given:

1. In the simulation, movement and transmission are stochastic processes.

2. This sim does not have an entirely homogeneous population, with different IFRs and varying numbers of con-
tacts between subjects.

5.2.2 2. Local

In remaining simulations, we begin to introduce ever increasing homogeneity.

Our first change is to adjust the subjects mover functions to local. The local mover has a strong bias towards
locations only in its immediate vicinity, which is a better approximation of real world processes (though certainly not
a perfect one).

We will also extend the simulation an extra year.

group1['mover'] = 'local'
group2['mover'] = 'local'
group3['mover'] = 'local'
group4['mover'] = 'local'

(continues on next page)
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groups = [group1, group2, group3, group4]
params['days'] = int(365*2)

sim = Sim(groups=groups, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed To Load
Results:

Peak 4%
HIT 56%
Total 69%
Fatalities 0.42%
% > 70 36%
IFR 0.60%
Days to Peak 355

Compared to Example 1, we can see that restricting movement has a major impact on spread. The curve is flattened
and extended with total infected, peak, HIT, and fatalities all reduce.

But the virus is never completely eradicated and instead moves in a progressive wave across the grid space. Note that
the infection and fatalitiy levels are somewhat artificially reduced as the virus still has a large susceptible population
in the upper portion of the grid that it has not yet reached.

Local movement does not satisfy the “well-mixed” condition of the SIR model. Particularly interesting is that the
initial conditions of this scenario *DO* very closely resemble a SIR model. So, an observer measuring 𝑅0 in a local
environment might see spread consistent with a well-mixed population but the population may not be well-mixed at a
larger scale.

5.2.3 3. Social

In this simulation, we set mover=social for just the 20-49 age group. This is a rough approximation of that group’s
real-world propensity to travel more frequently (or go to more events).

group1['mover'] = 'local'
group2['mover'] = 'social'
group3['mover'] = 'local'
group4['mover'] = 'local'
groups = [group1, group2, group3, group4]

sim = Sim(groups=groups, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed To Load
Results:

(continues on next page)
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Peak 34%
HIT 62%
Total 85%
Fatalities 0.54%
% > 70 49%
IFR 0.63%
Days to Peak 71

Comparing again to Example 1, we can see how powerful mixing is within a population. Even with the majority of
subjects moving only locally, a small group of subjects is moving more broadly across the space will significantly
increase the amount of spread.

5.2.4 4. Pre-Existing Immunity

In this scenario, we adjust the susceptibility factor for just two groups by relatively small amounts as follows:

• 20-49: 80%

• 50-69: 65%

This means, in the inverse, that 10% and 25% of the subjects in the respective groups are already immune to the virus
(whether through pre-existing T-cell immunity, anti-bodies, or otherwise).

The older group is assumed to have a lower susceptibility factor as it is more likely that older people will have had
more exposure to similar viruses over their lifetime.

T-cell immunity to sars-cov-2 remains a controversial subject, but many studies have found prevalance of T-cells
between 20% - 50% in people unexposed to sars-cov-2. It is suggested that exposure to “common cold” coronaviruses
(or more dangerous ones) may convey this immunity.

group2['susf'] = .8
group3['susf'] = .65
groups = [group1, group2, group3, group4]

sim = Sim(groups=groups, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 19%
HIT 44%
Total 63%
Fatalities 0.35%
% > 70 29%
IFR 0.56%
Days to Peak 93

Relative to Example 3 above, pre-existing immunity would reduce all aspects of the spread curve signifcantly.

Note the reduction in fatalities results even though the most susceptible group is assumed to NOT have pre-existing
immunity.
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5.2.5 5. Events

Certainly, the vast majority of people in the US do not move in such pre-defined ways as set out by the mover
function. In reality, people tend to move with a local bias with a small number of interactions, supplemented by larger
movements to locations with a large number of interactions in a small amount of time.

In RKnot, we can simulate this with Event objects. And we will incorporate a number of them in this simulation.

First, we will reset our group parameters by importing from sims.baseus.

Then we will instantiate a handful of events recurring periodically over the duration of the sim.

from rknot.sims.baseus import params, groups

from rknot.events import Event

school1 = Event(
name='school1', xy=[25,42], start_tick=2,
groups=[0], capacity=10, recurring=2

)
school2 = Event(

name='school2', xy=[78,82], start_tick=3,
groups=[0], capacity=10, recurring=2

)
school3 = Event(

name='school3', xy=[92,32], start_tick=4,
groups=[0], capacity=7, recurring=2

)
game1 = Event(

name='game1', xy=[50,84], start_tick=6,
groups=[0,1,2,3], capacity=100, recurring=14

)
game2 = Event(

name='game2', xy=[45,52], start_tick=5,
groups=[0,1,2], capacity=76, recurring=14

)
game3 = Event(

name='game3', xy=[12,87], start_tick=1,
groups=[0,1,2], capacity=56, recurring=14

)
game4 = Event(

name='game4', xy=[52,98], start_tick=3,
groups=[1,2], capacity=113, recurring=28

)
concert1 = Event(

name='concert1', xy=[20,20], start_tick=7,
groups=[0,1], capacity=50, recurring=14

)
concert2 = Event(

name='concert2', xy=[91,92], start_tick=28,
groups=[1], capacity=50, recurring=14

)
concert3 = Event(

name='concert3', xy=[62,38], start_tick=21,
groups=[2,3], capacity=25, recurring=14

)
concert4 = Event(

name='concert4', xy=[38,42], start_tick=14,
groups=[1,2], capacity=50, recurring=14

(continues on next page)
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)
bar1 = Event(

name='bar1', xy=[17,24], start_tick=4,
groups=[1], capacity=5, recurring=3

)
bar2 = Event(

name='bar2', xy=[87,13], start_tick=5,
groups=[1], capacity=5, recurring=4

)
bar3 = Event(

name='bar3', xy=[52,89], start_tick=6,
groups=[1,2], capacity=5, recurring=3

)
bar4 = Event(

name='bar4', xy=[16,27], start_tick=7,
groups=[1,2,3], capacity=4, recurring=7

)
bar5 = Event(

name='bar5', xy=[89,46], start_tick=6,
groups=[1,2], capacity=7, recurring=7

)
church = Event(

name='church', xy=[2,91], start_tick=7,
groups=[2,3], capacity=20, recurring=7

)

events = [
school1, school2, school3, game1, game2, game3, game4,
concert1, concert2, concert3, concert4,
bar1, bar2, bar3, bar4, bar5, church

]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 29%
HIT 56%
Total 82%
Fatalities 0.50%
% > 70 39%
IFR 0.61%
Days to Peak 77

We’ve attempted to tailor the event setup so that the infection curve resembles that of Example 1. The theory is that
the 𝑅0 measured in the early stages of a pandemic should be reflective of actual contacts, not the theoretical contacts
of the model.

This scenario is not perfectly substitutable with Example 1, however.

One measure we can use to compare scenarios is the total number of interactions. We find that under the Event and
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Gated approaches it takes more contacts to result in the same level of spread.

Avg Number of Contacts per Subject:

Example 1: 50.3

Example 2: 52.3

Example 3: 53.4

Example 5: 65.5

Example 6: 75.5

Average of first 100 days across 5 sims for each scenario.

Other issues with substitutability may exist and are being explored. SIR models determine R0 in the idealized envi-
ronment of Example 1 and so may not be suitable for customized environments such as this one.

5.2.6 6. Gates

We can further improve the real world relevance of interactions by introducing gates. Subjects are not always freely
able to interact with all other people in a population. Often their movement is restricted to within certain areas.
Furthermore, other people’s access into those areas is restricted.

Elderly people living in retirement homes or assisted living centers is an example. To simulate this, we will split
group4 into two separate groups.

• group4a

– population of 600 (2/3s of group4)

– IFR of 4.2%

– move freely throughout the entire grid as previously

• group4b

– population of 300 (1/3rd of group4)

– IFR of 7.8%

– movement restricted to 6x6 box

We have also adjusted the IFR on the basis that group4b is likely older and also probably more frail than group4a.
IFRs approximate those found here.

In addition, we will add an event specifically for the new group inside the gate.

group4a = dict(
name='70+',
n=600,
n_inf=0,
ifr=0.042,
mover='local',

)
group4b = dict(

name='70+G',
n=300,
n_inf=0,
ifr=0.0683,
mover='local',
box=[1,6,1,6],

(continues on next page)
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box_is_gated=True,
)
groups = [group1, group2, group3, group4a, group4b]

church2 = Event(
name='church2', xy=[2,3], start_tick=7,
groups=[4], capacity=5, recurring=7

)

events_gated = [
school1, school2, school3, game1, game2, game3, game4,
concert1, concert2, concert3, concert4,
bar1, bar2, bar3, bar4, bar5,
church, church2,

]

Now, such elderly populations are entirely sealed of from the rest of the world. In fact, they are often visited by family
members or friends. We can mimick this with the use of a Travel object.

In this sim, at least one person will enter into the group4b gate for a day only. And this will repeat every day of the
sim.

from rknot.events import Travel

visit = Travel(
name='visit', xy=[1,1], start_tick=3,
groups=[1,2], capacity=1, duration=1, recurring=1

)
events.append(visit)

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 30%
HIT 62%
Total 83%
Fatalities 0.52%
% > 70 40%
IFR 0.62%
Days to Peak 66

Again, the gated structure is intended to mimic Example 1, Example 3, and Example 5.

The use for Events and Gates will become clear when we explore the impact of Policy Decisions.

5.2.7 7. Pre-Immunity with Events and Gates

Now we can see how pre-immunity might impact viral spread in a population with more heterogeneous interactions.
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group2['susf'] = .8
group3['susf'] = .65
groups = [group1, group2, group3, group4a, group4b]

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 20%
HIT 42%
Total 62%
Fatalities 0.47%
% > 70 37%
IFR 0.76%
Days to Peak 86

Similar to Example 4, pre-existing immunity flattens the curve somewhat and results in a modest decrease in fatalities
(even with an abnormally high IFR in this case).

5.2.8 8. Self Aware Social Distancing

In a self-aware population, we can also incorporate an assumption that certain members of the population will imple-
ment social distancing practices even in the absence of prescribed government policy. For example, individuals might
wear masks or face shields while in public.

This is implemented via a SocialDistancing object, which reduces the transmission factor of the subjects in the appli-
cable group.

from rknot.events import SocialDistancing as SD

sd = SD(name='6-feet', tmfs=[.975,.95,.75,.5], groups=[1,2,3,4], start_tick=5,
→˓duration=90)
events.append(sd)

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

(continues on next page)
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Peak 28%
HIT 55%
Total 82%
Fatalities 0.51%
% > 70 42%
IFR 0.62%
Days to Peak 81

Social distancing does flatten the infection curve, resulting in a modest decrease in peak infections and HIT and
delaying the peak slightly. Fatalities are also reduced.

5.2.9 9. Self Aware Social Distancing + Pre-Immunity

In a self-aware population, we can also incorporate an assumption that certain members of the population will im-
plement social distancing practices (even in the absence of prescribed government policy). For example, individuals
might wear masks or face shields while in public.

This is implemented via a SocialDistancing object, which reduces the transmission factor of the subjects in the appli-
cable group.

from rknot.events import SocialDistancing as SD

sd = SD(name='6-feet', tmfs=[.975,.95,.75,.5], groups=[1,2,3,4], start_tick=5,
→˓duration=90)
events.append(sd)

sim = Sim(groups=groups, events=events, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 14%
HIT 36%
Total 60%
Fatalities 0.33%
% > 70 27%
IFR 0.55%
Days to Peak 92

Here we see that just the combination of pre-immunity and a modest amount of social distancing reduces all aspects
of the infection curve.

Note that, despite the continued visits from outside, an outbreak in the 70+G group did not occur until after the social
distancing practices were ceased. This outbreak resulted in a small surge in cases (visible in a rebound in the curve at
~100 days) and a tripling in fatalities in a short period.

So social distancing practices were helpful, but only so long as they were maintained.
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5.2.10 10. Isolation

TBD

5.3 Policy

With a more realistic model of subject interaction, we can begin to experiment with the impact of different policy
measures.

RKnot can simulate policy measures via Restriction, SocialDistancing, and Quarantine objects. Fur-
ther details here.

The simulations are based on this scenario and so the impact of the policy measures contemplated should be considered
relative to that scenario.

The structure can be imported as follows:

from rknot.sims.baseus import params, events_gated, groups_gated

5.3.1 1. Restrict Large Gatherings

We’ll start by simply restricting large gathers, which for this sim is any event with 10+ capacity (0.1% of the entire
population). The restrictions will last for 120 days.

When considering capacity, remember that a 100,000-seat stadium in a 10 million person catchment represents 1% of
the population.

We assume this policy are implemented on day 30, when the population finally realizes there is a pandemic and
government has had time to implement prevention measures.

The restriction will last for 120 days.

from rknot.events import Restriction

large_gatherings = Restriction(
name='large', start_tick=30, duration=120, criteria={'capacity': 10}

)
events_w_res = events_gated + [large_gatherings]

sim = Sim(groups=groups_gated, events=events_w_res, details=True, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 15%
HIT 28%
Total 73%
Fatalities 0.45%
% > 70 38%
IFR 0.62%
Days to Peak 69
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We see that the curve is flattened significantly during the restriction period. Infections have a much lower peak, BUT
also a much longer tail (evident by the still high relatively high level of total infections).

This results as the event restriction is lifted, which leads to a slower rate of decline of the virus.

5.3.2 2. Social Distancing

We can mimick the implementation of Social Distancing policies in certain settings via the SocialDistancing
object. Mask wearing, hand sanitizing, and 6-foot perimeters all provide varying levels of protection.

It is hard to estimate the degree of protection from each, and even harder in combination. For instance, this study
found anywhere between a 1.1- and 55-fold reduction in exposure to influenza with varying mask designs.

So we provide tmfs here for illustration purposes only, attempting to catch all social distancing practices. We also
provide different tmfs for the different age groups, meant to simulate adherence to policy.

The policy measure is implemented on day 30 and maintained for 120 days.

from rknot.events import SocialDistancing as SD

sd = SD(
name='all', tmfs=[.8,.8,.7,.65,.5],
groups=[0,1,2,3,4], start_tick=30, duration=120

)
events_w_res = events_gated + [sd]

sim = Sim(groups=groups_gated, events=events_w_res, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 8%
HIT 24%
Total 68%
Fatalities 0.39%
% > 70 33%
IFR 0.57%
Days to Peak 96

We can see that social distancing is certainly the most effective approach in terms of “flattening the curve” with the
lowest HIT and peak infections seen thus far.

The social distancing methods are successful in preventing an outbreak among the 70+G group until ~120 days, well
after peak infections are reach.

However, consistent with the restriction on large gatherings, the infection curve has protracted tail coinciding with the
restriction being lifted. Over an extended time frame, the virus still infects a fairly large portion of the population.

5.3.3 3. Restrict Elderly Visits

We can restrict events by name by passing name key to criteria. We can do this to restrict the travel event to the
70+G area.
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The policy measure is implemented on day 30 and maintained for another 120 days. There will be no other restrictions.

no_visits = Restriction(
name='no_visits', start_tick=30,
duration=120, criteria={'name': 'visit'}

)
events_w_res = events_gated + [no_visits]

sim = Sim(groups=groups_gated, events=events_w_res, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 27%
HIT 54%
Total 80%
Fatalities 0.29%
% > 70 17%
IFR 0.36%
Days to Peak 77

By simply quarantining the elderly, we see the most dramatic reduction in fatalities of any scenario thus far. An
outbreak NEVER occurs in the 70+G gated area, even AFTER the policy restrictions are lifted, because the virus has
already been eradicated by that time.

We can see here that allowing a high level of infection among the least susceptible has resulted in a low level of
fatalities among the most susceptible.

This is a controversial approach and does have difficult ethical implications, but its power to reduce death cannot be
ignored.

5.3.4 4. Social Distancing and Restrict Elderly Visits and Large Gatherings

What happens if we combine the three approaches above?

large_gatherings = Restriction(
name='large', start_tick=30, duration=120, criteria={'capacity': 10}

)
no_visits = Restriction(

name='no_visits', start_tick=30,
duration=120, criteria={'name': 'visit'}

)
sd = SD(

name='all', tmfs=[.8,.8,.7,.65,.5],
groups=[0,1,2,3,4], start_tick=30, duration=120

)
events_w_res = events_gated + [large_gatherings, no_visits, sd]

sim = Sim(groups=groups_gated, events=events_w_res, **params)
sim.run()

(continues on next page)
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chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

Peak 24%
HIT 55%
Total 82%
Fatalities 0.42%
% > 70 36%
IFR 0.51%
Days to Peak 199

Incredibly, the combination of restrictions leads to worse outcomes than any of the individual restrictions on their own.

While in place, the restrictions do tightly contain infections and signficantly delay the onset of the pandemic. But once
they are lifted, the virus spreads unabated through a still highly susceptible population.

i.e. Not enough subjects have achieved immunity by the time the restrictions are lifted.

5.3.5 5. Quarantine

We can even mimick the impact of quarantines via the Quarantine object.

Here we show the impact of a 30-day quarantine for all groups in the Sim. We include a restriction on visits to the
elderly during the quarantine.

from rknot.events import Quarantine

quarantine = Quarantine(
name='all', start_tick=30,
groups=[0,1,2,3,4], duration=30

)
no_visits = Restriction(

name='no_visits', start_tick=30,
duration=30, criteria={'name': 'visit'}

)

events_w_res = events_gated + [quarantine, no_visits]

sim = Sim(groups=groups_gated, events=events_w_res, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Video Failed to Load
Results:

(continues on next page)
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Peak 1%
HIT 1%
Total 1%
Fatalities 0.00%
% > 70 0%
IFR 0.00%
Days to Peak 32

The pandemic never materializes in this simulation. The quarantine eradicates the virus swiftly upon implementation.

This is an interesting result. This obvioulsy did not occur in many places in the real world that took this approach.
There are several possible reasons worth considering:

• Random Variation: if you run this simulation multiple times, you will note some sims where spread does occur.

• Scale: a larger simulation would increase the possibility that a very small number of subjects can continue to
pass around the virus while it is muted in the broader population

• Adherence: real-world adherence to the implemented policies was much lower than this simulation suggests.

• Inconsistency: some areas implemented strict quarantines while others did not, and there was mixing among
those populations.

5.3.6 6. Quarantine with Adherence

We can investigate the impact of low adherence to quarantine requirements by setting the adherence property of
the Quarantine object.

from rknot.events import Quarantine

quarantine = Quarantine(
name='all', start_tick=30,
groups=[0,1,2,3,4], duration=30

)
no_visits = Restriction(

name='no_visits', start_tick=30,
duration=30, criteria={'name': 'visit'}

)

events_w_res = events_gated + [quarantine, no_visits]

sim = Sim(groups=groups_gated, events=events_w_res, **params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

[16]: chart_params

[16]: {'use_init_func': True,
'show_intro': True,
'dotsize': 0.1,
'h_base': 10,
'interval': 100.0}

Video Failed to Load
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With just 10% of the population ignoring the quarantine requirements, the virus spreads almost as though there was
no quarantine at all.

Video Failed to Load

The virus barely survives for the first 6-months of the outbreak, then as per other scenarios, once restrictions are lifted
an outbreak occurs. Still, when the outbreak does occur, it is characterized by one of the lowest peaks and HITs in our
analysis (due in part to the pre-immmunity of some of the groups).

And it achieves the lowest fatality rate of the group, mainly by restricting access to the elderly population for the
duration of the pandemic and ensuring an outbreak never occurs in that region.
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CHAPTER 6

Dynamic Transmission Risk

6.1 Structure

In SIR: Factors Influencing Spread, we assumed a constant daily rate of transmission risk during the infectious period.
This is in keeping with the SIR model, however, in reality we know that transmission risk is influenced by an infected
person’s viral load, which is a dynamic property.

Here we will demonstrate how to incorporate dynamic transmission risk and compare its impact to the outcomes of
the SIR simulations.

The model and parameters used in this scenario are derived from a paper from the Fred Hutchinson Cancer Research
Center, henceforth known as the Hutch model.

In particular, the Hutch model requires the following parameters in a Gamma-distributed contact regime:

• average of 4 contacts per day per subject, 𝑘

• dispersion of 40, 𝜔

• These parameters should result in 𝑅0 1.8.

This is achieved using Events. See Sizing for a detailed demonstration.

The group structure continues to be informed by CDC Best Planning Scenario guidelines for IFR.

Other assumptions:

• Population of 10,000

– proportionately split among the 4 age groups to match US Census data.

• Initial Infected of 2

• Duration of Immunity 365 days

• Density of 1 dot / location (excluding the vbox)

• a collection of 9,142 separate events, each recurring every 30 days.
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The transmission risk curve used in these simulations is visualized below. See Hutch Model for the derivation.

6.2 Events

Here we show the basic outcome of dynamic viral load in a gamma-distributed contacts environment.
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The transmission curve has bee calculated separately and is available as tmr from the rknot.dots.fhutch mod-
ule.

All of the 9,000+ events occur in the “Events” vbox. All events have capacities of 3 subjects or more.

Again, details on the event structure are found here.

from rknot import Sim, Chart

from rknot.dots.fhutch import tmr
from rknot.sims.us_w_load_18 import events

group1 = dict(name='0-19', n=2700, n_inf=0, ifr=0.00003, mover=.98)
group2 = dict(name='20-49', n=4100, n_inf=1, ifr=0.0002, mover=.98)
group3 = dict(name='50-69', n=2300, n_inf=1, ifr=0.005, mover=.98)
group4 = dict(name='70+', n=900, n_inf=0, ifr=0.054, mover=.98)

vbox = {'label': 344, 'box': 344}
params = {'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr, 'vboxes':
→˓vbox, 'events': events}

sim = Sim(**params)
sim.run()

chart = Chart(sim).to_html5_video()

<IPython.core.display.HTML object>

The results are:
<IPython.core.display.HTML object>

The results relative to the SIR Events simulation are lower across the board, which is mainly attributable to the lower
𝑅0 utilized. With 𝑅0 of 1.8, we would expect HIT of ~44%, which is close to the result here.

There are two other important differences:

• the peak occurs earlier

• there is a narrower range between peak/hit/total infections

These differences result for a couple reasons:

1. in the Hutch model used here, the infection duration is 30 days, double that used in SIR. Thus, as new infections
occur, there are fewer recoveries.

2. while the infection duration is longer, the likelihood of infection is highly concentrated in the 3 to 5 day period
of peak viral load. Thus, to achieve the same 𝑅0, there must be more infections sooner. By the same token, as
herd immunity is reached and more infections reach later life cycle, there are fewer infections to extend the tail.

Fatality measures are inline with expectations from SIR model.

Using the looper function demonstrated in Sizing, we can quickly generate a sample of simulations to determine
patterns.

The table below shows the results of 250 iterations of this scenario:
<IPython.core.display.HTML object>

The chart below shows the distribution of HIT for each of the 250 simulations. The vast majority of simulations
resulted in no secondary infections (i.e. an outbreak never occured). Where an outbreak did take hold, outcomes
centered around ~40% HIT.
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6.3 Care Homes

We replicate the SIR Gates scenario by creating a separate group of elderly isolated within a gate, intended to simulate
care homes or assisted living centers.

One augmentation is made: a small group of care home workers are added that will reqularly enter the gate to service
residents. The care home workers will be drawn from the 20-49 age group.

The new groups are:

• group2b

– population of 66

– Assuming 2.2MM care home workers in the United States out of a population of 330MM.

– remaining attributes similar to 20-49

– events individual travel events for half the group, recurring every day

• group4a

– population of 600 (2/3s of group4)

– IFR of 4.2%

– remaining attributes mathcing prior 70+ group
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• group4b

– population of 300 (1/3rd of group4)

– 25 locations

– IFR of 7.8%

– ‘local’ mover function

– not eligible for any events

group4b used the local mover and its gated area has increased density. This is perhaps counter-intuitive. Care
home residents are likely more well-mixed than the broader population and more closely follow normally-distributed
contacts. So we approximate increased mixing with a higher p-value. Ideally, contact distribution in such environ-
ments would be researched for guidance.

The event vbox has been adjusted to include the 5 groups that are not gated.

from rknot import Sim, Chart
from rknot.events import Travel
from rknot.dots.fhutch import tmr

from rknot.sims import us_w_load_18

group1 = dict(name='0-19', n=2700, n_inf=0, ifr=0.00003, mover=.98)
group2a = dict(name='20-49', n=4034, n_inf=1, ifr=0.0002, mover=.98)
group2b = dict(name='HCW', n=66, n_inf=0, ifr=0.0002, mover=.98)
group3 = dict(name='50-69', n=2300, n_inf=1, ifr=0.005, mover=.98)
group4a = dict(name='70+', n=600, n_inf=0, ifr=0.042, mover=.98)
group4b = dict(name='70+G', n=300, n_inf=0, ifr=0.0683, mover='local', box=[1,5,1,5],
→˓box_is_gated=True)

groups = [group1, group2a, group2b, group3, group4a, group4b]

for e in us_w_load_18.events:
e.groups = [0,1,2,3,4]

visit = Travel(name='visit', xy=[1,1], start_tick=3, groups=[1,3,4], capacity=1,
→˓duration=1, recurring=1)

works = []
for i in range(group2b['n'] // 2):

loc = np.random.randint(1, 11, size=(2,))
work = Travel(name=f'hcw-work-{i}', xy=loc, start_tick=1, groups=[2], capacity=1,

→˓duration=1, recurring=1)
works.append(work)

for e in events_gated:
e.groups = [0,1,2,3,4]

events_gated = events_gated + [visit] + works

vbox = {'label': 'Events', 'box': 344}
params = {'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr, 'vboxes':
→˓vbox, 'events': us_w_load_18.events}

sim = Sim(**params)
sim.run(dotlog=True)

chart = Chart(sim).to_html5_video()
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This time, we will first run 100 simulations of the scenario to find the average outcomes. The average results are
shown in the table below:
<IPython.core.display.HTML object>

Below we can see the distribution of HIT, which is very similar to the Events.

And now we generate a representative simulation:
<IPython.core.display.HTML object>

The results are shown below compared to SIR scenario:
<IPython.core.display.HTML object>

Again, relative to SIR, the simulation has a lower peak. In this instance the peak is also significantly later as well.
Consistent with the Events scenario, a larger proportion of the fatalities are experienced among the elderly.

6.4 Capacity Restriction

As with the SIR Model simulations, we can explore the impact of policy restrictions on spread in our more sophisticated
environment. First, we will restrict large gatherings.

We’ll again restrict gatherings with 10+ capacity. We assume this policy is implemented on day 30. The restriction
will last for 120 days.

With a gamma distributed contact distribution, a very large number of contacts can be eliminated by eliminating just a
small fraction of events.
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Below we see that events with capacity 10+ represent just 17.0% of all events:

import numpy as np

caps = np.array([e.capacity for e in us_w_load_18.events_gated])
n_events = caps.shape[0]
n_events_gt10 = np.bincount(caps)[10:].sum()
per = n_events_gt10 / n_events

<IPython.core.display.HTML object>

And that these events represent 84.4% of all contacts generated by those events:

counts, bins = np.histogram(caps-1, bins=np.arange(max(caps) + 1))
contacts = counts*(np.arange(counts.shape[0])+1)
c_gt10 = np.sum(contacts[10:]*np.arange(10, contacts[10:].shape[0] + 10))
c = np.sum(contacts*np.arange(contacts.shape[0]))
c_per = c_gt10 / c

<IPython.core.display.HTML object>

The updated structure is as follows:

from rknot.events import Restriction

lg = Restriction(name='large', start_tick=30, duration=120, criteria={'capacity': 10})

events_w_res = events_gated + [lg]

params = {'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr, 'vboxes':
→˓vbox, 'events': events_w_res}

sim = Sim(**params)
sim.run(dotlog=True)

chart = Chart(sim).to_html5_video()

We again show the average results of 250 simulations in the table below:
<IPython.core.display.HTML object>

We can see that restricting contacts to a maximum of 10 per day has a dramatic impact on spread, reducing the total
amount of infections and significantly shortening the duration.

We can see below that the vast majority (almost 80%) of simulations resulted in no outbreak at all. Note, however,
that some simulations resulted in moderate outbreaks of 10% total infections or more. So given enough iterations (say
among different municipalities, provinces, states or countries), a significant outbreak is sure to occur despite the best
efforts of policy.
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<IPython.core.display.HTML object>

The results of the simulation are shown in the table below, compared with the same scenario from the SIR model
simulations:
<IPython.core.display.HTML object>

The Hutch model results in a far more muted curve. This aligns with research that indicates super-spreader events
(where a single individual is responsible for a large number of secondary infections) are responsible for the vast
majority of secondary infections.

When those superspreader events are eliminated, spread is curtailed.

This result is somewhat confounding, however, given that many jurisidictions across the global have implemented a
similar policy without such a dramatic impact.

Some reasons for this deviation may include:

1. few policies have truly limited all people to less than 10 contacts per day for 120 days. Often there have been
exemptions for essential services. For example, during the second wave in North America, many children
continued to go to school.

2. adherence to such policies is likely not 100%.

3. mixing amongst jurisdictions with different policies

6.4.1 Capacity Restrictions with Adherence

To investigate the impact of adherence (or lack thereof), simulations were ran for a dozen scenarios of different
maximum event capacities and adherence factors (and some combinations). The results are shown in the tables below:
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<IPython.core.display.HTML object>

And below the results of different adherence factors for a policy of maximum capacity 10. Adherence of 100 means
full compliance and matches the first scenario above. Aherence of 0 means no compliance and outcomes match that
of the Gates scenario above.

We have split the table in two sections, one with all simulations and the second showing only those with secondary
infections.
<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Finally, we combined limited adherence with the other maximum capacity policies, as per the table below:
<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

The above tables are a bit busy, so we prepared a heat map across the two dimensions of capacity and adherence with
color corresponding to total infections.

Some findings from the data above:

1. restricting capacity is very impactful right up to 75 max capacity. So restricting only just the largest events
should still have a moderating effect on spread.

2. adherence factor has only a very modest impact on spread at the higher factors. If fully 20% of subjects are not
observing the prescribed policies, this shouldn’t lead to dramatic increase in spread. Even at 50% adherence,
spread is significantly muted relative to no policy at all.
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3. A 25 capacity restriction at ~75% adherence would result in just 10% total infections across the population.
This appears to be a good target that allows for some flexibility.

For comparison purposes, we will show a sample simulation of the 25 Max, 50% adherence scenario.

from rknot.events import Restriction

lg = Restriction(name='large', start_tick=30, duration=120, criteria={'capacity': 25},
→˓ adherence=.75)

events_w_res = events_gated + [lg]

params = {'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr, 'vboxes':
→˓vbox, 'events': events_w_res}

sim = Sim(**params)
sim.run(dotlog=True)

chart = Chart(sim).to_html5_video()

<IPython.core.display.HTML object>

The results of th sim are shown below in comparison to our base 10 max capacity scenario:
<IPython.core.display.HTML object>

So restricting contacts to maximum 25 per day has a similar impact on spread even with only 75% adherence to the
policy.

6.5 Social Distancing

We will now investigate the impact of social distancing measures as outlined here.

We provice tmfs to each age group, representing the adherence to and impact of various tactics including 6-feet of
distance, masks, hand sanitizer, etc.

The policy measure is implemented on day 30 and maintained for 120 days.

Note we set group2b to tmf=.5, indicating much striter adherence to social distancing practices than its age cohort
(which is likely consistent with care home workers in the real world).

from rknot.events import SocialDistancing as SD

sd = SD(name='all', tmfs=[.8, .8, .5, .7,.65,.5], groups=[0,1,2,3,4,5], start_tick=30,
→˓ duration=120)

events_w_res = events_gated + [sd]

params = {
'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr,
'vboxes': {'label': 'Events', 'box': 344}, 'events': us_w_load_18.events

}

sim = Sim(**params)
sim.run()

(continues on next page)
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(continued from previous page)

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

The average results of 250 iterations of the scenario are shown in the table below:
<IPython.core.display.HTML object>

The distribution of infections is heavily skewed towards zero with fairly volatile deviations at the margin.

<IPython.core.display.HTML object>

The results of the simulation are compared to the SIR model below:
<IPython.core.display.HTML object>

Here we see that social distancing has an even more pronounced impact on spread. The peak and hit are flattened
significantly, but the tail is also much shorter.

A lower 𝑅0 is in part responsible, but so too is the viral load curve in Hutch, which has a longer infection duration but
a much shorter truly infectious period.

Additionally, fatalities are MUCH lower by a factor of 10. This is due to the lower overall infection level, but note
that an outbreak was prevented in the care home (70+G area). With the shorter infectious period, the virus has fewer
opportunities to enter the gate.

6.5.1 Social Distancing with Adherence

As with Capacity Restrictions above, we can investigate the impact that sub-100% adherence might have on spread.
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Adherence with respect to SocialDistancing requires one additional consideration. A single event is used to
cover all the groups in the sim, however, each group is likely to have a different adherence factor given their differing
perceived risk factors and motivations.

For instance, 70+G subjects are likely to have very high adherence given the known risks invovled and the supervision
provide by home care professionals. 20-49 subjects (particularly the youngest in the group) exhibit greater risk-
taking behavior in general and covid-19 has provded no different; their adherence would be expected to be lower.

We ran 5 different scenarios, each with differing adherence factors for each group. The table below shows the adher-
ence factors used for each group in each scenario.
<IPython.core.display.HTML object>

The results of 100 iterations of each scenario are shown below:
<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Again we see that the policy restriction is resilient in the face of non-compliance, although social distancing appears
less resilient than capacity restrictions.

Below we show a representative simulation for the Medium adherence scenario.
<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

6.6 Restrict Elderly Visits

Again, as with the SIR simulations, we will restrict visits to the elderly, HOWEVER, care home workers will continue
to have access.

The policy measure is implemented on day 30 and maintained for another 120 days. There will be no other restrictions.

no_visits = Restriction(name='no_visits', start_tick=30, duration=120, criteria={'name
→˓': 'visit'})

events_w_res = events_gated + [no_visits]

params = {'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr, 'vboxes':
→˓vbox, 'events': us_w_load_18.events}

sim = Sim(**params)
sim.run()

chart = Chart(sim, use_init_func=True)
chart.animate.to_html5_video()

Below we see the results of 250 simulations of the scenario:
<IPython.core.display.HTML object>

Below we can see the distribution of HIT among the different iterations. Given the restrictions on contacts are very
limited in the general population, HIT is very similar to that of the Gates scenario.
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Below we show a representative simulation:
<IPython.core.display.HTML object>

The results of the simulation are shown below:
<IPython.core.display.HTML object>

So the outbreak in the sample simulation is on par with that in SIR, with the usual steeper slope and shorter duration.

Fatalities in this particular sim are also on par with SIR, however, the average values were much higher than SIR and
relative to the total infections, fatalities were much higher in Hutch. Fatalities were skewed much higher towards the
>70 age group as well.

We can see from the animation that around tick 50 an outbreak occurs in the 70+G gated area. This did not occur in
the SIR simulation. We can investigate this by analyzing the dotlog.

Below we can see that the restrictions were successful in limiting infections inside the gate up to tick 40. On tick 40,
however, 4 infections occured within the group and that expanded to 19 infections by tick 44.

[64]: from rknot import Sim
from rknot.dots import MATRIX_COL_LABELS as ML
infs_in_70g = []
for i in range(30, 45):

dots = sim.dotlog[i]
g5s = dots[dots[:, ML['group_id']] == 5]
inf5 = g5s[g5s[:, ML['is_inf']] == 1]
infs_in_70g.append((i, inf5.shape[0]))

print (infs_in_70g)
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[(30, 0), (31, 0), (32, 0), (33, 0), (34, 0), (35, 0), (36, 0), (37, 0), (38, 0), (39,
→˓ 0), (40, 4), (41, 4), (42, 4), (43, 4), (44, 19)]

We can focus in on tick 39 to see how the virus entered the gate.

First, we find the subjects inside the gate on tick 39.

[66]: dots = sim.dotlog[39]
gate_locs = sim.gates[0]['locs']
dots_in_gate = dots[np.isin(dots[:, ML['loc_id']], gate_locs[:,0])]
print (dots_in_gate.shape[0])

307

There were 307 subjects inside the gate on tick 39.

[68]: not5_in_gate = dots_in_gate[dots_in_gate[:, ML['group_id']] != 5]
print (not5_in_gate.shape[0])

7

Of those 307 subjects, 7 were not in the 70+G group. In fact, all 7 are home care workers (group_id=2). Below we
show the slice of the dot matrix showing the home care workers inside the gate on tick 39.

[70]: print (not5_in_gate)

[[ 6734 2 1 0 1 0 0 412 5 5
9305 92 24 0 9168 119684 6 98 100 20

-1 -1 -1 -1 0 1]
[ 6737 2 1 0 1 0 0 207 3 4

1647 17 16 0 9167 119320 6 98 100 20
-1 -1 -1 -1 0 1]

[ 6750 2 1 0 1 0 0 309 4 4
10124 100 27 0 9155 114952 6 98 100 20

-1 -1 -1 -1 0 1]
[ 6770 2 1 0 1 0 0 104 2 3

9027 89 52 0 9160 116772 6 98 100 20
-1 -1 -1 -1 0 1]

[ 6780 2 1 0 0 1 1 408 5 1
7166 71 27 0 9147 112040 6 98 100 20

35 -1 66 432 0 1]
[ 6785 2 1 0 1 0 0 206 3 3

8392 83 29 0 9158 116044 6 98 100 20
-1 -1 -1 -1 0 1]

[ 6791 2 1 0 1 0 0 205 3 2
5369 53 66 0 9149 112768 6 98 100 20

-1 -1 -1 -1 0 1]]

If we inspect the matrix above closely, we can see that only one subject is infected, subject id=6780.

We can isolate this subject below:

[71]: not5_in_gate[not5_in_gate[:,ML['is_inf']] == 1]

[71]: array([[ 6780, 2, 1, 0, 0, 1, 1, 408,
5, 1, 7166, 71, 27, 0, 9147, 112040,
6, 98, 100, 20, 35, -1, 66, 432,
0, 1]], dtype=int32)

So restricting eldery visits is ultimately a meaningless and ineffectual policy if home care workers enter the gate
without obstruction. Obviously, home care workers must be allowed to enter the gate to care for the patrons of those
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residenices. So, how then to approach the issue?

One possibility is to implement a testing regime.

6.7 Schools

As noted in Capacity Restrictions, settting a maximum capacity of 10 for events, or the equivalent of limiting contacts
to 10 per day per person, should significantly reduce spread and kill the virus very quickly.

This, of course, has not happened in the case of sars-cov-2, despite the widespread use of similar policies. This is
likely in part due to the many exceptions that have been allowed to those policies.

For example, leading up to the second/third wave in North America, many jurisdictions maintained open schools.
This approach is understandable given the importance of education during developmental years and the extremely low
fatality risk for the age group, however, this approach will inevitably lead to greater spread.

To demonstrate, we implement an augmentation to the Home Care environment. Changes include:

• create a new VBox for events exclusive to the 0-19 age group.

• reassign a specific number of events to that age group

• add a new group, Teachers, that will also attend events in the Schools VBox.

– the Teachers group will have n=97, proportioned based on 3.2MM teachers in the United States out of
a population of 330MM.

– remaining attributes similar to 20-49 group

– there will be 49 travel events into the Schools VBox, recurring every day

Full details on the environment can be found here. The adjusted events are available in the us_w_load_18 module.

from rknot.sims import us_w_load_18
from rknot.events import Restriction

group1 = dict(name='0-19', n=2700, n_inf=0, ifr=0.00003, mover=.982)
group2a = dict(name='20-49', n=3937, n_inf=1, ifr=0.0002, mover=.982)
group2b = dict(name='HCW', n=66, n_inf=0, ifr=0.0002, mover=.982)
group2c = dict(name='Teachers', n=97, n_inf=0, ifr=0.0002, mover=.982)
group3 = dict(name='50-69', n=2300, n_inf=1, ifr=0.005, mover=.982)
group4a = dict(name='70+', n=600, n_inf=0, ifr=0.042, mover=.982)
group4b = dict(name='70+G', n=300, n_inf=0, ifr=0.0683, mover='local', box=[1,6,1,6],
→˓mover=.982)

groups = [group1, group2a, group2b, group2c, group3, group4a, group4b]

events_schools = us_w_load_18.params_schools['events']
vboxes = [{'label': 'Events', 'box': 231}, {'label': 'Schools', 'box': 152}]
params = {'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr, 'vboxes':
→˓vboxes, 'events': events_schools}

sim = Sim(**params)
sim.run(dotlog=True)

chart = Chart(sim).to_html5_video()
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The Schools vbox will maintain ~900 children at each tick, at events of various capacities. Below we confirm the
number of 0-19 subjects participating in events in the School box on each tick.

Below we show the contact distribution created by the School box events. These events are randomly reassigned from
the existing event structure in the Home Care scenario. This approach should maintain the required contact distribution
across the entire environment.

Note the three largest contact events (all 100+ capacity) will occur inside the School box.
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<IPython.core.display.HTML object>

Below, we see the total daily event capacity for the School Box scenario, which is identitcal to the Home Care scenario.

The base scenario was run through 100 simulations, with the results compared to the original Gates scenario and
shown below:
<IPython.core.display.HTML object>

We see the curves between the new Schools scenario and the Home Care scenario are very similar, which is the
expected result. Note, however, the much narrower spread between Peak/HIT/Total infections. This is indicative of
steeper and more abrupt tail to the spread curve.

A sample simulation is shown below:
<IPython.core.display.HTML object>

The results of the simulation are shown below:

Again, the addition of schools results in a similar curve. We can see the steeper curve on both sides of the peak, which
in this scenario actually leads to fewer total infections the care home scenario.

The number of fatalities and age distribution are similar as well.

6.7.1 Capacity Restriction w School Exception

We will now incorporate a capacity restriction that does not apply to the newly created School events using the
exclude parameter.
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from rknot.sims import us_w_load_18
from rknot.events import Restriction

lg = Restriction(name='large', start_tick=30, duration=120, criteria={'capacity': 10},
→˓ exclude={'name': 'school'})
params['events'] += [lg]

sim = Sim(**params)
sim.run(dotlog=True)

chart = Chart(sim).to_html5_video()

Below are the results of 100 simulations of the above structure, compared with original max-10 policy restriction.

<IPython.core.display.HTML object>

From the above, we can see that the approach of leaving schools open leads to a dramatic increase in spread. Below
we compare to some other capacity restriction scenarios:
<IPython.core.display.HTML object>

We can see that leaving schools open can result in a spread curve similar to some of the more permissive capacity
restrictions that were inspected. Below we show a representative simulation:
<IPython.core.display.HTML object>

The results of the simulation are shown below:
<IPython.core.display.HTML object>

We see that providing an exclusion for in-person school attendance makes a 10 max capacity restriction in the broader
population much less effective in reducing spread.

6.7.2 Capacity Restriction w School Exception and Non-Compliance

The capacity restriction in the prior sims assumed 100% adherence factor to the 10 max capacity restriction. We will
show the results of 75% adherence.

from rknot.sims import us_w_load_18
from rknot.events import Restriction

lg = Restriction(name='large', start_tick=30, duration=120, criteria={'capacity': 10},
exclude={'name': 'school'}, adherence=.75,

)
params['events'] += [lg]

sim = Sim(**params)
sim.run(dotlog=True)

chart = Chart(sim).to_html5_video()

The results of 100 iterations are shown below for only the outbreak iterations:
<IPython.core.display.HTML object>

We can see above that additional infringement of the policy amongst the broader population can negatively influence
spread, but the impact is muted.

An example simulation is presented below.
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[13]: from IPython.core.display import display, HTML
from rknot.notebook import animHTML
display(HTML(animHTML('us_w_load/' + slug)))

<IPython.core.display.HTML object>

The results are as follows, compared with the 100% adherence sim:
<IPython.core.display.HTML object>

We can see that 75% adherence results in a slightly larger outbreak with a more abrupt tail (evidenced by the narrower
spread between Peak/HIT/Total infections). Fatalities were also inline and confined to only the oldest age groups.

6.7.3 Separate Restrictions for Schools

The scenarios up to now have assumed exactly zero policy restrictions on School box interactions. In reality, schools
have implemented soccial distancing policies designed to limit spread, which we will attempt to mimic.

In determining the potential restrictions, we have considered some real world examples including the fulsome details
provided by the Ontario provincial government (in Canada).

These restrictions include:

• usual social distancing measures of masks, hand sanitizer, separate entrance and exits, etc.

• expected 70% of maximum attendance during the year

• no class size maximums for elementary schools (although students are expected to interact only with student in
their class)

• class size restrictions of 15 students for secondary schools

In practice, it is very hard to limit interactions. Videos of schools under these restrictions show long lineups with
students in close quarters, using lockers, interacting in hallways etc.

We simulated three different evironments:

• 100Max restriction with 100% adherence

• 50Max restriction with 75% adherence factor

• 25Max restriction with 75% adherence factor

*One possibility we have not considered is that the 0-19 age group is somehow more resilient and incurs fewer
infections per contact than the broader population. This simply does not appear to be the case based on the prevailing
testing data. In Ontario, for example, not only have children *not* been shown to incur fewer infections, ages 0-24
were all shown to have the highest level of positive tests during the second wave and were still increasing through late
Dec 2020 even when all other age groups had flattened out.* See positive results by age group.
<IPython.core.display.HTML object>

First, we show the implementation of the 100 capacity event restriction in the School box, via the schoolmax
restriction. The only difference in the other scenarios include the adherence parameter in the schoolmax object.

from rknot.sims import us_w_load_18
from rknot.events import Restriction

lg = Restriction(
name='large', start_tick=30, duration=120, criteria={'capacity': 10},
exclude={'name': 'school'}, adherence=.75,

)

(continues on next page)
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(continued from previous page)

schoolmax = Restriction(
name='large', start_tick=30, duration=120,
criteria={'capacity': 100, 'name': 'school'},

)
us_w_load_18.params_schools['events'] += [lg, schoolmax]

sim = Sim(**us_w_load_18.params)
sim.run(dotlog=True)

chart = Chart(sim).to_html5_video()

<IPython.core.display.HTML object>

We can see the progressively suppressed spread curve as we reduce the capacity maximum in the School box. Despite
having all 3 of the largest events (all >100 capacity), eliminating those events has any only minor impact on spread.
There are simply not enough contacts in generated by those 3 events to spur broader infection.

Spread is only materially impact with a lower maximum that encompasses many more events.

Still, relative to the original 10max 75% adherence restriction, the outbreak in 25max 75% adherence is 4 - 5x larger.

It is difficult to imagine how a school could limit contacts to fewer than 25 per day for students and staff given class
sizes and other interactions. And so we see that open schools, even with their own restrictions, can undo much of the
work being done by more rigorous restrictions in the broader population.

Below we show a representation simulation:
<IPython.core.display.HTML object>

The results are shown below compared to the original Home Care scenario, which did not have a seperate school vbox
or any exceptions for schools.
<IPython.core.display.HTML object>

We can see from the above that providing exclusions for schools, despite including some restrictions without those
schools, significantly impairs the impact of restrictions in the broader economy.

We must consider if an outbreak can ever be prevented if we open schools (and we cannot reduce daily contacts at
schools to less than maximum 25 per day).
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CHAPTER 7

Multiple Jurisdictions

With our credible model for dynamic transmission at the contact level and our ability to size environments with
approriate contact distributions, we can show the true power of RKnot in modelling complex scenarios.

We have previously shown that contact restrictions and social distancing in any one community should be effective
in eliminating sars-cov-2 relatively quickly. Across the world, however, many states, provinces, and countries,
have experienced second and third waves spaced out months apart despite various forms of strict quarantines and
lockdowns.

So why haven’t they been effective?

In part, this has resulted from the many exceptions made to these restrictions, in particular, schools remaining open in
many jurisdictions.

We must also consider the impact of multiple jurisdictions that have unique characteristics, set policy independently,
and, importantly, allow travel between them.

We will focus on two jurisdictions to start, building to four, and building in complexity along the way.

7.1 Mixed

To start, we will simply double the size of the environment used in our dynamic transmission risk models. Thus,

• n = 20,000 and 4 initial infections

• 8 groups, split evenly into two states: “East State” and “West State”

• the states will be exact reflections of each other:

– same size, n = 10,000

– 2 initial infections each

– same demographic mix

– same number of events

• the event structrue for each state is detailed in Sizing (and imported from a pickled object as per below).
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• each state will have its own vbox. The East State vbox must be reassigned and the events adjusted to point
to the correct groups.

from copy import deepcopy

from rknot import Sim, Chart
from rknot.events import Restriction, Quarantine
from rknot.dots.fhutch import tmr
from rknot.sims import us_w_load_18.events

group1 = dict(name='W0-19', n=2700, n_inf=0, ifr=0.00003, mover=.98)
group2 = dict(name='W20-49', n=4100, n_inf=1, ifr=0.0002, mover=.98)
group3 = dict(name='W50-69', n=2300, n_inf=1, ifr=0.005, mover=.98)
group4 = dict(name='W70+', n=900, n_inf=0, ifr=0.054, mover=.98)
wstate = [group1, group2, group3, group4]

wbox = {'label': 'W Main', 'box': 344}
wevents = deepcopy(us_w_load_18.events)
wrsxns = deepcopy(us_w_load_18.rsxns)

group5 = dict(name='E0-19', n=2700, n_inf=0, ifr=0.00003, mover=.98)
group6 = dict(name='E20-49', n=4100, n_inf=1, ifr=0.0002, mover=.98)
group7 = dict(name='E50-69', n=2300, n_inf=1, ifr=0.005, mover=.98)
group8 = dict(name='E70+', n=900, n_inf=0, ifr=0.054, mover=.98)
estate = [group5, group6, group7, group8]

ebox = {'label': 'E Main', 'box': 344}
eevents = deepcopy(us_w_load_18.events)

for e in eevents:
e.groups = [4,5,6,7]
e.vbox = 1

groups = wstate + estate
vboxes = [wbox, ebox]
events = wevents + eevents

params = {
'groups': groups, 'density': 1, 'days': 365, 'tmr_curve': tmr,
'vboxes': vboxes, 'events': events

}

sim = Sim(**params)
sim.run()

Below, we show the arrangement of all of the dots mixed throughout the space. The only difference from the single
jurisdiction structure is the presence of two vboxes (instead of one).
<IPython.core.display.HTML object>

On a proportionate basis, this structure is indistinguishable from the n=10,000, 4 group structure used in the viral load
simulations. And it should result in the same outbreak curve, on average.

To test, we ran 50 sims for a quick comparison to the base Events structure that we are building from.
<IPython.core.display.HTML object>

As expected, we can see above that, on average, the spread results generated in this structure match those of the Events
structure from the viral load analysis. Notice, however, that an outbreak (𝑅0 > 0) occured much more frequently: 56%
vs. 27%. This is likely a result of the greater number of initial infections (4 vs. 2).
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Also notice that the average Peak is lower and Days to Peak higher in our new scenario despite all other metrics being
the same.

In the distribution below, we can see that, in this scenario, more simulations result in outbreaks, but when they do,
they concentrated around the same level of total infection.

We can see this in the sample simulation below:
<IPython.core.display.HTML object>

Above, we can see a “wave” effect occuring with two peaks forming, the first around 70 days and second around 115
days. We can seperate the curve among the constituent states to see how each state’s curve might have added to the
aggregate.
<IPython.core.display.HTML object>

From above, we can see that what looked like a single curve and a single outbreak was, in fact, two outbreaks among
the two “states”, West and East.

Remarkably, the dots from both states are free to mix in the main grid. The separate waves result simply from isolated
event spaces where only the largest events (3+ capacity) occur within the state groups.

Next we will show the impact of further isolating the two states.

7.2 Borders

Now we split the environment into two halves, separating the subjects of the West and East states by a border.
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They cannot interact in any way.

This can be accomplished by simply assign a separate box to the groups in each state, as per below:

for w in wstate:
w['box'] = {'bounds': [1, 72, 1, 144], 'label': 'West State'}

for e in estate:
e['box'] = {'bounds': [73, 144, 1, 144], 'label': 'East State'}

groups = wstate + estate
params['groups'] = groups

sim = Sim(**params)
sim.run(dotlog=True)

This results in the environment shown below:
<IPython.core.display.HTML object>

We ran 50 simulations to compare with the Mixed environment:
<IPython.core.display.HTML object>

We can see:

• an outbreak occurs with about the same frequency; likely b/c both environments have the same number of initial
infections

• the size of the outbreaks is significantly lower in the split environment

• the peaks are significantly lower in the split environment
<IPython.core.display.HTML object>

Again, we see below that the contact distribution of the Borders environment is quite different from the Mixed envi-
ronment.
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Here, the same number of outbreaks occur, but the virus cannot cross the border so at worst it can only spread amongst
half the population. As a result, we see two local peaks form, representing when an outbreak occurs in only one state
or in both.

In a uniform environment, there are only two outcomes:

1. Peak

2. No Peak

When we split the space, there are now 4 distinct possible outcomes:

1. No Peaks

2. One Peak: West

3. One Peak: East

4. Two Peaks

We can even get a quick sense for how often these different outcomes might occur, as per below.
<IPython.core.display.HTML object>

As per the piechart above,only 10% of outbreaks resulted in a Double Peak, while more than 40% resulted in an
outbreak in either state. Both states were equally likely to have an outbreak on their own.

Below we see a representative simulation that evidences the border separating the two states. We can also see in the
grid on the left that the outbreak was entirely isolated to the West state and did not seep into the East state at all. This
resulted in the shorter, more muted peak.
<IPython.core.display.HTML object>

Finally, we also show a typical Double Peak scenario:
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<IPython.core.display.HTML object>

Here we see both states develop outbreaks independently and simultaneously, both with very similar spread curves,
peaking just after 60 days and reaching ~17% peaks. The aggregate curve is inline with expectations for a well-mixed
environment.

7.3 Border Crossings

Now that we have controlled borders between isolated states, we can explore the impact of border crossings on spread.

To do so, we will create Travel events allowing subjects from each state to cross over into the other state, as follows:

• total of 20 crossings per day

– 10 crossings per day West to East

– 10 crossings per day East to West

• each group will have equal likelihood to participate in the crossings

The crossing amount was roughly determined based on international travel statistics out of the US:

• ~100MM travellers annually *from* the US to other countries

• ~90MM visits *from* other countries annually

• we have assumed 100MM for reach version.

100MM visitors annually
330MM actual population

* 10,000 pop
state

=
3,031 sim visitors annually

state

3,031 sim visitors
365 days

= 9 visitors per day per state

To do this, we will create 8 random locations for each event (within each state’s box), then assign them to our 8 travel
events.

from rknot.events import Travel

xs = np.random.randint(19, 120, size=4)
ys = np.random.randint(20, 120, size=4)
w_locs = np.vstack((xs, ys)).T

xs = np.random.randint(74, 120, size=4)
ys = np.random.randint(10, 120, size=4)
e_locs = np.vstack((xs, ys)).T

crosses = []
for i in range(9):

crosses += [Travel(name=f'WtoE_{i}', xy=w_locs[i], start_tick=1,
groups=[0,1,2,3], capacity=1, duration=1, recurring=1

)]
crosses += [Travel(

name=f'EtoW_{i}', xy=e_locs[i], start_tick=1,
groups=[4,5,6,7], capacity=1, duration=1, recurring=1

(continues on next page)
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(continued from previous page)

)]
params['events'] += crosses

The results of 50 simulations are shown below:
<IPython.core.display.HTML object>

We see only a limited impact from border travel as constructed. The structure actually resulted in fewer outbreaks and
resulted in similar single and double peak occurences.
<IPython.core.display.HTML object>

Below we show a typical Double Peak outcome. The outbreak is almost entirely extinguished and in decline in the
East state, but then spread takes hold independently in the West State and creates a second peak.
<IPython.core.display.HTML object>

7.4 Crossings with Event Access

The above simulation has major omission. Each traveller only visits the other state for a single tick, only ever land on
a single location in the other state’s main grid, and so have almost no contact with anyone while travelling.

In reality, travellers often have extended stays of 3/5/7/15/30+ days and, while in the other jurisidiction, they often
attend events / have contacts in that jurisdiction like any other local person.

We can mimick this more realistic mixing approach by utilizing the MultiTravel event object. This object also a
travel event greater than a single tick and allows any participants to attend events in their new region.
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We must also implementing a few changes to the existing events. Each event will now pull participants from its own
main grid as well as any box created to support cross border travel into the state.

We assume:

• 9 visits per day per state, consistent with the prior scenario

• Respective durations of the 9 visits:

– 4 visits are for 3 days

– 3 visits are for 5 days

– 1 visits is for 7 days

– 1 visit is for 11 days

The code looks like this:

from rknot.events import MultiTravel

for e in params['events']:
e.groups = np.arange(8)
if 'W' in e.name:

e.from_boxes = ['West State', 'EtoW']
e.no_events = False

if 'E' in e.name:
e.from_boxes = ['East State', 'WtoE']
e.no_events = False

With the existing events restructured, we assign each event to locations in their box at random.

n_cross = 9
xs = np.random.randint(19, 120, size=n_cross)
ys = np.random.randint(20, 120, size=n_cross)
w_locs = np.vstack((xs, ys)).T

xs = np.random.randint(74, 120, size=n_cross)
ys = np.random.randint(10, 120, size=n_cross)
e_locs = np.vstack((xs, ys)).T

crosses = []
for i, dur in zip(range(n_cross), (3,3,3,3,5,5,5,7,11)):

crosses += [MultiTravel(name=f'WtoE_{dur}', xy=e_locs[i], start_tick=1,
groups=[0,1,2,3], capacity=1, recurring=1, duration=dur

)]
crosses += [MultiTravel(

name=f'EtoW_{dur}', xy=w_locs[i], start_tick=1,
groups=[4,5,6,7], capacity=1, recurring=1, duration=dur

)]

params['events'] += crosses

50 iterations of the above scenario lead to the following:
<IPython.core.display.HTML object>

126 Chapter 7. Multiple Jurisdictions



RKnot

Incredibly, we see that just 10 border crossings per day with travellers mixing normally leads to (almost) the same the
results as though there were no border at all.

We can also see that the peak distribution has inverted almost completely. Now a Double Peak event is far more likely
than a single peak in either state.
<IPython.core.display.HTML object>

We can use some additional tools to confirm that mixing between the states was in fact the culprit in increased preva-
lence of double peaks. The easiest way is to find simulations where a state reaches zero infections, effectively eradi-
cating the virus in prior scenarios, only to have the virus re-emerge.

This can ONLY occur if the virus was transported in from the other state.
HBox(children=(FloatProgress(value=0.0, max=20.0), HTML(value='')))

{0: 'East', 17: 'East', 21: 'West', 43: 'West', 45: 'East'}

<IPython.core.display.HTML object>

It also tells us the index position of those states in our grouping of simulations. We will isolate simulation # 21, where
West State inherited an outbreak.

We can isolate the specific subject that carried the virus.

[26]: sim = xesims[21]
id_groups = [westids, eastids]
west_inf, east_inf = find_group_infs(sim, id_groups, westids, eastids)
westtrim = np.trim_zeros(west_inf, 'fb')
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Above is the number of current infections in the West State at each tick during the simulation. We can clearly see an
entire 14-day period during that simulation where the West State had zero infections.

Then, on Tick 44, a single new infection emerges. We can easily isolate which subject was infected.

[27]: from rknot.dots import MATRIX_COL_LABELS as ML
erads = np.argwhere(westtrim == 0)
i_erad = erads[-1, 0]

dots = sim.dotlog[i_erad + 1]
westmask = np.isin(dots[:, ML['group_id']], westids)
west = dots[westmask]
west[west[:, ML['is_inf']] == 1]

[27]: array([[ 5210, 1, 1, 0, 0, 1, 1, 15569,
109, 18, 15569, 109, 18, 1, 2, 0,

224729, 5, 98, 100, 20, 44, -1, 75,
441, 1, 1]], dtype=int32)

The array above shows the state of subject 5210 as of Tick 44. We can expand the dot matrix to ticks both before and
after to get a sense of this subjects movement.

[28]: id_new = west[west[:, ML['is_inf']] == 1][0,0]
dottrace = sim.dotlog[i_erad - 4 : i_erad + 4, id_new]

We can take the array above and put it in a table for easier viewing:

[29]: ticks = np.arange(i_erad - 4, i_erad + 4)
dtrace = np.zeros(shape=(8,28), dtype=np.int32)
dtrace[:, 0] = ticks
dtrace[:, 1:] = dottrace

<IPython.core.display.HTML object>

From the table above we can see the following:

• Subject 5210 was inside the West State box and not infected in the days prior to Tick 44.

• On Tick 42, the subject travelled to East State via 3-day MultiTravel event.

• On Tick 43, the subject attended an event at location (128, 139), where it was infected.

• On Tick 45, the subject returned to West State and is at least partly responsible for the re-emergence of the virus
in that state.

We can even confirm this visually by isolating that specific dot in the animation by passing highlight=[5210] at
the Chart instantiation. We also slowed down the frame rate. You can see at Tick 44, the subject jumps from West to
East and back very quickly.

chart = Chart(sim, highlight=[5210], show_intro=True, show_restricted=True)
chart.to_html5_video()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Finally above, we show the full outcome of the sim, which pesents almost as a single prolonged peak.
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7.5 Care Homes

With a few modifications, we can incorporate features of the Care Home to further increase realism.

Again, we simply double the number of groups, double the number of events, and assign a set of cross border events.
In this sim, the 70+G group in each state is restricted from cross border travel.

import numpy as np
from copy import deepcopy

from rknot import Sim, Chart
from rknot.events import Restriction, Quarantine, Travel, MultiTravel
from rknot.dots.fhutch import tmr
from rknot.sims import us_w_load_18

group1 = dict(name='W0-19', n=2700, n_inf=0, ifr=0.00003, mover=0.982)
group2a = dict(name='W20-49', n=4034, n_inf=1, ifr=0.0002, mover=0.982)
group2b = dict(name='WCHW', n=66, n_inf=0, ifr=0.0002, mover=0.982)
group3 = dict(name='W50-69', n=2300, n_inf=1, ifr=0.005, mover=0.982)
group4a = dict(name='W70+', n=600, n_inf=0, ifr=0.042, mover=0.982)
group4b = dict(name='W70+G', n=300, n_inf=0, ifr=0.0683, mover='local')

wstate = [group1, group2a, group2b, group3, group4a, group4b]

group5 = dict(name='E0-19', n=2700, n_inf=0, ifr=0.00003, mover=0.982)
group6a = dict(name='E20-49', n=4034, n_inf=1, ifr=0.0002, mover=0.982)
group6b = dict(name='ECHW', n=66, n_inf=0, ifr=0.0002, mover=0.982)
group7 = dict(name='E50-69', n=2300, n_inf=1, ifr=0.005, mover=0.982)
group8a = dict(name='E70+', n=600, n_inf=0, ifr=0.042, mover=0.982)
group8b = dict(name='E70+G', n=300, n_inf=0, ifr=0.0683, mover='local')
estate = [group5, group6a, group6b, group7, group8a, group8b]

for w in wstate:
w['box'] = {'bounds': [1, 72, 1, 144], 'label': 'West State'}

group4b['box'] = [1,6,1,6]

for e in estate:
e['box'] = {'bounds': [73, 144, 1, 144], 'label': 'East State'}

group8b['box'] = [139,144,1,6]

groups = wstate + estate

wbox = {'label': 'W Main', 'box': 344}
ebox = {'label': 'E Main', 'box': 344}

wevents = deepcopy(us_w_load_18.events_gated)
eevents = deepcopy(us_w_load_18.events_gated)

# Care Home Events
i_ch = -34
for e in wevents[i_ch:]:

w.name = f'W_{w.name}'

for e in eevents[i_ch:]:
e.name = f'E_{e.name}'

# Main Events

(continues on next page)
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(continued from previous page)

for w in wevents[:i_ch]:
w.name = f'W{e.name}'
w.from_boxes = ['West State', 'EtoW']
e.groups = np.arange(8)
e.no_events = False

for e in eevents[:i_ch]:
e.name = f'W{e.name}'
e.from_boxes = ['East State', 'WtoE']
e.vbox = 1
e.groups = np.arange(8)
e.no_events = False

groups = wstate + estate
vboxes = [wbox, ebox]
events = wevents + eevents

# Add border crossings
xs = np.random.randint(19, 120, size=4)
ys = np.random.randint(20, 120, size=4)
w_locs = np.vstack((xs, ys)).T

xs = np.random.randint(74, 120, size=4)
ys = np.random.randint(10, 120, size=4)
e_locs = np.vstack((xs, ys)).T

crosses = []
for i, rec in zip(range(4), (3,3,5,5)):

crosses += [MultiTravel(name=f'WtoE_{i}', xy=e_locs[i], start_tick=1,
groups=[0,1,2,3,4], capacity=1, recurring=rec

)]
crosses += [MultiTravel(

name=f'EtoW_{i}', xy=w_locs[i], start_tick=1,
groups=[6,7,8,9,10], capacity=1, recurring=rec

)]

events_ch += crosses
rsxns = []
quars = []

params_ch = {
'groups': groups, 'density': 1, 'days': 365,
'tmr_curve': tmr, 'vboxes': vboxes,
'events': events_ch, 'rsxns': rsxns, 'quars': quars,

}
sim = Sim(**params_ch)
sim.run(dotlog=True)

The results of 60 simulation show outcomes very similar to the Crossing scenario.
<IPython.core.display.HTML object>
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We can also per below that in these 60 simulations, not a single outbreak was isolated to only one state.
<IPython.core.display.HTML object>

Finally, we show a sample simulation.
<IPython.core.display.HTML object>

7.5.1 Care Homes - 10Max

From the Care Home environment, we will begin to investigate the impact of policy restrictions in the two jurisdictions
on spread. The restrictions are derived from those used previously in the SIR and Dynamic Transmission.

In our first scenario, both West State and East State will simultaneously impose a restriction as follows:

• no events with more than 10 subjects

• commences on Day 30

• lasting 120 days

• restriction covers all groups in the respective state

• there is 90% adherence to the restriction

Reminder that there are 10 subjects per day travelling between states.

From our prior implementation, we simply add the following code to the rsxns keyword of our parameters.
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wcap = Restriction(
name='large', start_tick=30, duration=120,
criteria={'capacity': 10, 'groups': [0,1,2,3,4,5]}, adherence=.9

)
ecap = Restriction(

name='large', start_tick=30, duration=120,
criteria={'capacity': 10, 'groups': [6,7,8,9,10,11]}, adherence=.9

)
params_ch['rsxns'] = [wcap, ecap]

sim = Sim(**params_ch)
sim.run(dotlog=True)

The results of 48 simulations are shown below:
<IPython.core.display.HTML object>

We can see from the above that a 10 max daily contact restriction remains highly effective at suppressing spread and
eradicating the virus, this despite no restrictions on cross-border travel.

This is because, even if subjects travel cross border, their ability to mix with the population in the visiting state is
severly limited.

We can see in the peak distribution below that isolated outbreaks in either state re-emerge somewhat, however, the
level of total infections in all scenarios is substantially lower.
<IPython.core.display.HTML object>

Below we show a sample simulation of a single peak outbreak. Notice that spread is materially curtailed and that
fatalities are isolated almost exclusively to the 70+G group in the care homes.
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<IPython.core.display.HTML object>

7.5.2 Care Homes - 25Max

We will augment the prior scenario only slightly, replacing the 10 max capacity restriction with a 25 max capacity
restrction in each state and tuning the adherence down to 75%.

The code is as follows:

‘‘‘python wcap = Restriction( name=’large’, start_tick=30, duration=120, criteria={‘capacity’: 25, ‘groups’:
[0,1,2,3,4,5]}, adherence=.75 ) ecap = Restriction( name=’large’, start_tick=30, duration=120, criteria={‘capacity’:
25, ‘groups’: [6,7,8,9,10,11]}, adherence=.75 ) params_ch[‘rsxns’] = [wcap, ecap]

sim = Sim(**params_ch) sim.run(dotlog=True) ‘‘‘

The results of 50 simulations are below:
<IPython.core.display.HTML object>

As expected, and inline with the same restriction in previous environments, spread impact is substantial, though less
than a 10max restrction.

Also, note in the distribution above that there was a single simulation with total infections of ~58%. So, despite the
best efforts of the populace under this policy, the virus was able to survive the lockdown and being spread unabated
thereafter.

We can see below that peaks in both regions was the prevailing outcome when there was spread, although isolated
spread did occur.
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Our sample simulations will first focus on that single outcome where total infections reached 59%.
<IPython.core.display.HTML object>

We can see in the spread curve that both regions had infections essentially driven down to zero during the restriction
period. Even as restrictions are lifted, spread remains very limited, only begins to rip higher in both states almost
simultaeously at around 210 days. This is a full 60 days after the restrictions were lifted.

We can see just how close the virus was to be eradicated in the sim logs.

Scipy can help us quickly find local minimums in the curr_inf log via argrelextrema.

[50]: from scipy.signal import argrelextrema

sim = ch25sims[6]
mins, = argrelextrema(sim.log['curr_inf'], np.less)

lowest = sim.log['curr_inf'][mins].min()
i_lowest = np.argwhere(sim.log["curr_inf"] == 44).ravel()[0]
print (f'Low: {lowest}')
print (f'Day of Low: {i_lowest}')

Low: 44.0
Day of Low: 203

So we know the lowest number of infections reached during the midpoint of the outbreak was 44 on Day 203. We can
prove this by isolating them in the dotlog.

[52]: from rknot.dots import MATRIX_COL_LABELS as ML
infmask = sim.dotlog[i_lowest][:, ML['is_inf']] == 1
infdots = sim.dotlog[i_lowest][infmask]
print (infdots.shape)

(44, 27)

And we can show that all infected subjects were in the West State:

[53]: np.all(infdots[:, ML['group_id']] <= 5)

[53]: True

Finally, below we show the more typical outcome from this restriction, which is a quick run up in infections prior to
and just after restrictions are put in place. Then, as the restrictions take hold, spread deflates and is eliminated very
quickly.
<IPython.core.display.HTML object>

7.6 Independent Policy

Now, we will explore some more complex structures.

In the dynamic transmission model, we have seen policy restrictions can be successful at supressing spread and ulti-
mately eradicating the virus (see here and here). In fact, these policy measures have proven fairly resilient even in the
face of low adherence.

But what happens when there are is mixing between multiple jurisdictions that take independent approaches to policy?

We will build from the Care Homes scenario above.
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In this sim, West State will be the more aggressive actor, implementing faster and more imposing policy. The East
State will act more slowly and with less imposition. Accordingly, the resrictions will be:

West State:

• Maximum 10 contacts, from Day 30 to Day 60

• Maximum 25 contacts, from Day 60 to Day 105

• Maximum 75 contacts, from Day 105 to Day 150

*This was a common approach for many of the northern US states and Canadian provinces in the Spring of
2020.*

East State:

• Maximum 25 contacts, from Day 75 to Day 105

• Maximum 75 contacts, from Day 105 to Day 135

Under isolated circumstances, the West State would most often experience no outbreak and at worst only a limited
one. When bordering with a less rigourous neighbor, the results prove to be very different.

Below is the code adding these restrictions.

wcap1 = Restriction(
name='wcap1', start_tick=30, duration=30,
criteria={'capacity': 10, 'from_boxes': ['West State', 'EtoW']}, adherence=.9

)
wcap2 = Restriction(

name='wcap2', start_tick=30, duration=45,
criteria={'capacity': 25, 'from_boxes': ['West State', 'EtoW']}, adherence=.75

)
wcap3 = Restriction(

name='wcap3', start_tick=75, duration=45,
criteria={'capacity': 75, 'from_boxes': ['West State', 'EtoW']}, adherence=.75

)

ecap1 = Restriction(
name='ecap1', start_tick=75, duration=30,
criteria={'capacity': 25, 'from_boxes': ['East State', 'WtoE']}, adherence=.5

)
ecap2 = Restriction(

name='ecap2', start_tick=105, duration=30,
criteria={'capacity': 75, 'from_boxes': ['East State', 'WtoE']}, adherence=.5

)

params['rsxns'] = [wcap1, wcap2, wcap3, ecap1, ecap2]
sim = Sim(**params)
sim.run(dotlog=True)

The results of 50 simulations are shown below:
<IPython.core.display.HTML object>
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Spread comes back with a vengenance in this scenario, showing very limited impact from the implementations, al-
though the time to peak does increase for reasons we’ll see below.

In the histrogram above, note that two local maxima have once again formed, suggesting outcomes with both single
peaks and double peaks, including a maxima around ~55% total infections, which is consistent with full outbreaks
across both states (despite the strict implementations int eh West!).

We can the prevalence of double peaks below.
<IPython.core.display.HTML object>

We can also so the composition of spread amongst the two regions in the bar chart below:
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Of the 22 simulations where spread was greater than 1%, the West State accounted for about half of all infections
about half the time. So, where its implementations in isolation would be expected to reduce the risk of an outbreak to
only 1%, here its risk remains 25%.

Below we show an example of such a double peak.
<IPython.core.display.HTML object>

Spread begins in the East and is eventually carried into the West. The East State’s policies have essentially zero impact
on spread, as the peak appears to occur before its 25 max restriction is implemented.

We can see a very modest peak in the West early in the sim and, essentially on queue with the loosening of restrictions,
around Day 110 spread takes hold and rips through the West State.

We could map this onto a real world scenario where:

• A new virus is discovered. Both states are unsure how widespread it may be.

• West State locks down as a preventative measure, driven by a focus on public health. East State does not, driven
by a focus on personal freedoms / responsibility / etc.

• West State derides East State for its lack of action.

• West State, believeing its outbreak is totally under control and seeing the outbreak on the downside, beings to
reopen.

• Because the virus is not fully eradicated, West State inherits the virus from East State and, because West State
does not have herd immunity, the virus spreads unabated.

• West State’s policy actions are for not.

Finally, we also show the example of a single peak where the West avoids the 2nd wave of spread.
<IPython.core.display.HTML object>
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